Search results

1 – 10 of 40
To view the access options for this content please click here
Article

M.P. Jenarthanan, R. Gokulakrishnan, B. Jagannaath and P. Ganesh Raj

The purpose of this paper is to find out the optimum machining parameters using Taguchi technique with principal component analysis (PCA) during end milling of GFRP composites.

Abstract

Purpose

The purpose of this paper is to find out the optimum machining parameters using Taguchi technique with principal component analysis (PCA) during end milling of GFRP composites.

Design/methodology/approach

In multi-objective optimization, weight criteria of each objective are important for producing better and accurate solutions. This method has been employed for simultaneous minimization of surface roughness, cutting force and delamination factor. Experiments were planned using Taguchi’s orthogonal array with the machining parameters, namely, helix angle of the end mill cutter, spindle speed, feed rate and depth of cut were optimized with considerations of multiple response characteristics, including machining force, surface roughness and delamination as the responses. PCA is adopted to find the weight factors involved for all objectives. Finally analysis of variance concept is employed on multi-SN ratio to find out the relative significance of machining parameter in terms of their percentage contribution.

Findings

The multi-SN ratio is achieved by the product of weight factor and SN ratio to the performance characteristics in the utility concept. The results show that a combination of machining parameters for the optimized results has helix angle of 35°, machining speed of 4,000 m/min, feed rate of 750 mm/rev and depth of cut of 2.0 mm.

Originality/value

Effect of milling of GFRP composites on delamination factor, surface roughness and machining force with various helix angle solid carbide end mill has not been analysed yet using PCA techniques.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article

M.P. Jenarthanan, Karthikeyan M. and Naresh Neeli

The purpose of this paper is to develop a mathematical model for delamination during drilling by using a response surface methodology (RSM) and also to determine how the…

Abstract

Purpose

The purpose of this paper is to develop a mathematical model for delamination during drilling by using a response surface methodology (RSM) and also to determine how the input parameters (tool diameter, spindle speed and feed rate) influence the output response (delamination) in machining of fiber metal laminates.

Design/methodology/approach

Three factors and a three-level central composite design in RSM are used to carry out the experimental investigation. A video measuring system is used to measure the width of maximum damage of the machined FML composite. The “Design Expert 7.0” is used to analyze the data collected graphically. Analysis of variance is carried out to validate the model and for determining the most significant parameter.

Findings

The response surface model is used to predict the input factors influencing the delamination on the machined surfaces of the ARALL composite at different cutting conditions with the chosen range of 95 percent confidence intervals. Analysis of the influences of entire individual input machining parameters on the delamination has been carried out using RSM.

Originality/value

The effect of delamination on drilling of ARALL composites with solid carbide tools of various diameters has not been analyzed yet using RSM.

Details

Multidiscipline Modeling in Materials and Structures, vol. 13 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article

Alagappan K M, Vijayaraghavan S, Jenarthanan M P and Giridharan R

The purpose of this paper is to identify the ideal process parameters to be set for the drilling of hybrid fibre-reinforced polymer (FRP) (kenaf and banana) composite…

Abstract

Purpose

The purpose of this paper is to identify the ideal process parameters to be set for the drilling of hybrid fibre-reinforced polymer (FRP) (kenaf and banana) composite using High-Speed Steel drill bits (5, 10, 15 mm) coated with tungsten carbide by means of statistical reproduction of the delamination factor and machining force using Taguchi–Grey Relational Analysis.

Design/methodology/approach

The contemplated process parameters are Feed, Speed and Drill Diameter. The trials were carried out by taking advantage of the L-27 factorial design by Taguchi. Three factors, the three level Taguchi Orthogonal Array design in Grey Relational Analysis was used to carry out the trial study. Video Measuring System was used to identify the damage around the drill region. “Minitab 18” was used to examine the data collected by taking advantage of the various statistical and graphical tools available. Examination of variance is used to legitimize the model in identifying the most notable parameter.

Findings

The optimised set of input parameters were found out successfully which are as follows: Feed Rate: 450 mm/min, Cutting Speed: 3,000 rpm and Drill Diameter of 5 mm. When these values are fed in as input the optimised output is being obtained. From ANOVA analysis, it is apparent that the Speed (contribution of 92.6%) is the most influencing parameter on the delamination factor and machining force of the FRP material.

Originality/value

Optimization of process parameters on drilling of natural fibres reinforced in epoxy resin matrices using Taguchi–Grey Relational Analysis has not been previously explored.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article

M.P. Jenarthanan, A. Lakshman Prakash and R. Jeyapaul

The paper aims to develop a mathematical model for delamination and surface roughness during end milling by using response surface methodology (RSM) and to determine how…

Abstract

Purpose

The paper aims to develop a mathematical model for delamination and surface roughness during end milling by using response surface methodology (RSM) and to determine how the input parameters (cutting speed, depth of cut, helix angle and feed rate) influence the output response (delamination and surface roughness) in machining of hybrid glass fibre reinforced plastic (GFRP; Abaca and Glass) composite using solid carbide end mill cutter.

Design/methodology/approach

Four-factor, three-level Taguchi orthogonal array design in RSM is used to carry out the experimental investigation. The “Design Expert 8.0” is used to analyse the data collected graphically. Analysis of variance is carried out to validate the model and for determining the most significant parameter.

Findings

The feed rate is the cutting parameter which has greater influence on delamination (88.39 per cent), and cutting speed is the cutting parameter which has greater influence on surface roughness (53.42 per cent) for hybrid GFRP composite materials. Both surface roughness and delamination increase as feed rate increases, which means that the composite damage is larger for higher feed rates.

Originality/value

Effect of milling of hybrid GFRP composite on delamination and surface roughness with various helix angles of solid carbide end mill has not been analysed yet using RSM.

Details

Pigment & Resin Technology, vol. 45 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article

M.P. Jenarthanan, Raahul Kumar S and Vinoth S

This study aimed to develop a mathematical model for delamination and surface roughness during end milling by using grey relational analysis (GRA) and to determine how the…

Abstract

Purpose

This study aimed to develop a mathematical model for delamination and surface roughness during end milling by using grey relational analysis (GRA) and to determine how the input parameters (cutting speed, depth of cut, helix angle and feed rate) influence the output response (delamination and surface roughness) in machining of hybrid glass fibre-reinforced plastic (GFRP) (abaca and glass) composite using solid carbide end mill cutter.

Design/methodology/approach

The Four factors, three levels Taguchi orthogonal array design in GRA is used to conduct the experimental investigation. The Shop Vision inspection system is used to measure the width of maximum damage of the machined hybrid GFRP composite. The Shop Handysurf E-35A surface roughness tester is used to measure the surface roughness of the machined hybrid GFRP composite. “Minitab 14” is used to analyse the data collected graphically. Analysis of variance is conducted to validate the model in determining the most significant parameter.

Findings

The GRA is used to predict the input factors influencing the delamination and surface roughness on the machined surfaces of the hybrid GFRP composite at different cutting conditions with the chosen range of 95 per cent confidence intervals. Analysis on the influences of the entire individual input machining parameters on the delamination and surface roughness has been conducted using GRA.

Originality/value

Effect of milling of the hybrid GFRP composite on delamination and surface roughness with various helix angle solid carbide end mill has not been analysed yet using the GRA technique.

Details

Pigment & Resin Technology, vol. 46 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article

Naresh Neeli, M.P. Jenarthanan and G. Dileep Kumar

The purpose of this paper is to optimise the process parameters, namely, fibre orientation angle, helix angle, spindle speed, and feed rate in milling of glass…

Abstract

Purpose

The purpose of this paper is to optimise the process parameters, namely, fibre orientation angle, helix angle, spindle speed, and feed rate in milling of glass fibre-reinforced plastic (GFRP) composites using grey relational analysis (GRA) and desirability function analysis (DFA).

Design/methodology/approach

In this work, experiments were carried out as per the Taguchi experimental design and an L27 orthogonal array was used to study the influence of various combinations of process parameters on surface roughness and delamination factor. As a dynamic approach, the multiple response optimisation was carried out using GRA and DFA for simultaneous evaluation. These two methods are best suited for multiple criteria evaluation and are also not much complicated.

Findings

The process parameters were found optimum at a fibre orientation angle of 15°, helix angle of 25°, spindle speed of 6,000 rpm, and a feed rate of 0.04 mm/rev. Analysis of variance was employed to classify the significant parameters affecting the responses. The results indicate that the fibre orientation angle is the most significant parameter preceded by helix angle, feed rate, and spindle speed for GFRP composites.

Originality/value

An attempt to optimise surface roughness and delamination factor together by combined approach of GRA and DFA has not been previously done.

Details

Multidiscipline Modeling in Materials and Structures, vol. 14 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

To view the access options for this content please click here
Article

M. Sakthivel, S. Vijayakumar and M.P. Jenarthanan

The purpose of this paper is to optimise the process parameters, namely, point angle, spindle speed and feed rate in the drilling of glass-reinforced stainless steel mesh…

Abstract

Purpose

The purpose of this paper is to optimise the process parameters, namely, point angle, spindle speed and feed rate in the drilling of glass-reinforced stainless steel mesh polymer (GRSSMP) composites using grey relational fuzzy logic.

Design/methodology/approach

Based on the full factorial design, the experiments were conducted. The output responses considered are thrust force, torque, delamination and diameter deviation. Based on responses, the optimised process parameter was selected using grey-fuzzy reasoning analysis (GFRA).

Findings

The percentage contribution of the drilling parameters is analysed using analysis of variance (ANOVA), and the result shows that feed rate is the most influential factor in the drilling of GRSSMP composites.

Research limitations/implications

The optimised drilling parameters have been used for drilling of polymer composites in the production industry.

Originality/value

Optimisation of process parameters during the drilling of GRSSMP composites using GFRA has not been performed previously.

To view the access options for this content please click here
Article

Ramesh S. and Jenarthanan M.P.

This study aims to focus on experimenting the performance of aluminum (Al) powder mixed electric discharge machining (PMEDM) of two different materials viz plastic mould…

Abstract

Purpose

This study aims to focus on experimenting the performance of aluminum (Al) powder mixed electric discharge machining (PMEDM) of two different materials viz plastic mould die steel (AISI P20) and nickel-based super alloy (Nimonic 75). This experimental study also focuses on using three different tool materials such as copper, brass and tungsten to analyze their influence on the process output. These materials find many uses in industrial as well as aerospace applications. The performance measures considered in this work are material removal rate (MRR), tool wear rate (TWR) and surface roughness (SR).

Design/methodology/approach

The experimental design used in this work is based on Taguchi’s L18 orthogonal array. Besides considering work and tool material as one of the process variables, other process variables are peak current (Ip), pulse on time (Ton) and concentration of powder (Cp). The analysis of variance (ANOVA) is performed on the experimental data to determine the significant variables that influence the output.

Findings

It is found that copper produced maximum MRR and brass tool exhibited higher TWR. However, the surface finish of the machined work piece was very much improved by using the brass tool. Though the performance of tungsten tool lies between the above two tool materials, it showed very little wear during EDM with or without the addition of Al powder.

Originality/value

The experimental investigation of PMEDM of nickel-based super alloy (Nimonic 75) has not been attempted before. Besides that, the study on the influence of tungsten tool on the performance of EDM is also very limited.

Details

World Journal of Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

To view the access options for this content please click here
Article

Kannan Murugesan, Kalaichelvan K., M.P. Jenarthanan and Sornakumar T.

The purpose of this paper is to investigate the use of embedded Shape Memory Alloy (SMA) nitinol wire for the enhancement of vibration and damping characteristics of…

Abstract

Purpose

The purpose of this paper is to investigate the use of embedded Shape Memory Alloy (SMA) nitinol wire for the enhancement of vibration and damping characteristics of filament-wound fiber-reinforced plastic composite hollow shafts.

Design/methodology/approach

The plain Glass Fiber-Reinforced Plastic (GFRP) and plain Carbon Fiber-Reinforced Plastic (CFRP) hollow shafts were manufactured by filament winding technique. Experimental modal analysis was conducted for plain hollow shafts of C1045 steel, GFRP and CFRP by subjecting them to flexural vibrations as per ASTM standard C747, with both ends clamped (C-C) end condition to investigate their vibration and damping behavior in terms of first natural frequency, damping time and damping ratio. Nitinol wires pre-stressed at various pre-strains (2, 4 and 6 per cent) were embedded with CFRP hollow shafts following same manufacturing technique, and similar experimental modal analysis was carried out by activating nitinol wires. The first natural frequencies of all the shaft materials were also predicted theoretically and compared with experimental measurements.

Findings

Among the three materials C1045 steel, plain GFRP and plain CFRP, the vibration and damping behavior were found to be the best for plain CFRP. Hence, CFRP shafts were considered for further improvement by embedding nitinol wires at pre-stressed condition. For CFRP shafts embedded with nitinol wires, the damping time decreased; and damping ratio and first natural frequency increased with increase in percentage of pre-strain. In comparison with plain CFRP, 7 per cent increase in first natural frequency and 100 per cent increase in damping ratio were observed for nitinol embedded CFRP shafts with 6 per cent pre-strain. Theoretical predictions of the first natural frequencies agree well with the experimental results for all the shaft materials.

Originality/value

The effect of nitinol on vibration and damping characteristics of filament wound hollow CFRP composite shafts with different pre-strains has not been studied extensively by the previous researchers. This paper addresses the effect of embedded nitinol wires pre-stressed at three varied pre-strains, that is, 2, 4 and 6 per cent on the vibration and damping characteristics of composite hollow CFRP shafts manufactured by filament winding technique.

Details

Pigment & Resin Technology, vol. 47 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

To view the access options for this content please click here
Article

Rajkumar D, Ranjithkumar P, M.P. Jenarthanan and Sathiya Narayanan C

The purpose of this paper is to develop a statistical model for delamination and thrust forcing during drilling of carbon-fibre reinforced polymer (CFRP) composites using…

Abstract

Purpose

The purpose of this paper is to develop a statistical model for delamination and thrust forcing during drilling of carbon-fibre reinforced polymer (CFRP) composites using response surface methodology (RSM) to determine the input parameters (drill speed, drill diameter and feed rate) that influences the output response (delamination and thrust force) in the machining of CFRP composite using solid carbide drill cutter.

Design/methodology/approach

Three factors, three levels central composite face centred (CCFC) design, is used to conduct the experiments on CFRP by carbide drill. The whole quality evaluation (delamination) was done by video measuring system to measure the width of maximum damage of the machined CFRP composite. The thrust forces during drilling are measured using digital multi-component cutting force (Make: IEICOS, Model: 652) dynamometer. The “Design Expert 7.0” is used to analyse the data collected graphically. An analysis of variance is carried out to validate the model and for determining the most significant parameter.

Findings

The response surface model is used to predict the input factors influencing the delamination and thrust force on the drilled surfaces of CFRP composite at different cutting conditions with the chosen range of 95 per cent confidence intervals. The analysis on the influences of the entire individual input machining parameters on the delamination and thrust force has been carried out using RSM. This investigation revealed that the drill diameter is the eminent factor which affects the responses.

Originality/value

In all, 0.3, 0.4 and 0.5 mm holes have been successfully made on CFRP using vertical machining center, whereas the previous researchers have not drilled hole size less than 1 mm in CFRP using vertical machining center.

Details

Pigment & Resin Technology, vol. 46 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 40