Search results

1 – 5 of 5
Article
Publication date: 25 June 2019

C. Jawali Umavathi and Mikhail Sheremet

The purpose of this study is a numerical analysis of steady-state heat transfer behavior of couple-stress nanofluid sandwiched between viscous fluids. It should be noted that this…

Abstract

Purpose

The purpose of this study is a numerical analysis of steady-state heat transfer behavior of couple-stress nanofluid sandwiched between viscous fluids. It should be noted that this research deals with the development of a cooling system for the electronic devices.

Design/methodology/approach

Stokes model is used to define the couple-stress fluid and the single-phase nanofluid model is used to define the nanofluid transport processes. The fluids in all regions are assumed to be incompressible, immiscible and the transport properties in all the three layers are assumed to be constant. The governing coupled linear ordinary differential equations are made dimensionless by using appropriate fundamental quantities. The exact solutions obtained for the velocity and temperature fields are evaluated numerically for various model parameters.

Findings

The results are demonstrated using different types of nanoparticles such as copper, silver, silicon oxide (SiO2), titanium oxide (TiO2) and diamond. The investigations are carried out using copper–water nanofluid for different values of couple-stress parameter a with a range of 0 = a = 12, solid volume fraction ϕ with a range of 0.0 ≤ ϕ ≤ 0.05, Eckert number Ec with a range of 0.001 ≤ Ec ≤ 6 and Prandtl number Pr with a range of 0.001 ≤ Pr ≤ 6. It was found that the Nusselt number increases by increasing the couple stress parameter, Eckert number and Prandtl number and it decreases with a growth of the solid volume fraction parameter. It was also observed that using SiO2–water nanofluid, the optimal Nusselt number is obtained. Further, using copper, silver, diamond and TiO2, nanoparticles and water as a base fluid does not show any significant changes in the rate of heat transfer. The couple-stress parameter enhances the velocity and temperature fields whereas the solid volume fraction suppresses the flow field for both Newtonian and couple-stress fluid.

Originality/value

The originality of this work is to analyze the heat transfer behavior of couple-stress nanofluid sandwiched between viscous fluids. The results would benefit scientists and engineers to become familiar with the analysis of convective heat transfer and flow structures in nanofluids and the way to predict the heat transfer rate in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors, electronics, etc.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2017

Jawali Umavathi, Jada Prathap Kumar, Ioan Pop and Murudappa Shekar

The purpose of this paper is to consider the problem of fully developed laminar mixed convection flow of a couple stress fluid in a vertical channel with the third-kind boundary…

Abstract

Purpose

The purpose of this paper is to consider the problem of fully developed laminar mixed convection flow of a couple stress fluid in a vertical channel with the third-kind boundary conditions in the presence or absence of heat source/sink effect.

Design/methodology/approach

Through proper choice of dimensionless variables, the governing equations are developed. These governing equations are solved analytically by the differential transform method and numerically by the Runge–Kutta shooting method. Analytical solutions for the velocity and temperature profiles for heat generation and absorption of the problem are reported.

Findings

The mass flow rate and Nusselt numbers at both the left and right channel walls on mixed convection parameter, Brinkman number, couple stress parameter and heat generation/absorption parameter for equal and unequal Biot numbers are presented. Favorable comparisons of special cases with previously published work are obtained. It is found that velocity, temperature, mass flow rate and Nusselt number decrease with couple stress parameter and increase with mixed convection parameter and Brinkman number.

Originality/value

The work done in this paper is not done earlier to the authors’ knowledge. This is the first paper in which the sixth-order differential equation is solved using the semi-numerical method, which is a differential method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 December 2018

Marina S. Astanina, Mikhail Sheremet and C. Jawali Umavathi

The purpose of this study is a numerical analysis of transient natural convection in a square partially porous cavity with a heat-generating and heat-conducting element using the…

Abstract

Purpose

The purpose of this study is a numerical analysis of transient natural convection in a square partially porous cavity with a heat-generating and heat-conducting element using the local thermal non-equilibrium model under the effect of cooling from the vertical walls. It should be noted that this research deals with a development of passive cooling system for the electronic devices.

Design/methodology/approach

The domain of interest is a square cavity with a porous layer and a heat-generating element. The vertical walls of the cavity are kept at constant cooling temperature, while the horizontal walls are adiabatic. The heat-generating solid element is located on the bottom wall. A porous layer is placed under the clear fluid layer. The governing equations, formulated in dimensionless stream function, vorticity and temperature variables with corresponding initial and boundary conditions, are solved using implicit finite difference schemes of the second order accuracy. The governing parameters are the Darcy number, viscosity variation parameter, porous layer height and dimensionless time. The effects of varying these parameters on the average total Nusselt number along the heat source surface, the average temperature of the heater, the fluid flow rate inside the cavity and on the streamlines and isotherms are analyzed.

Findings

The results show that in the case of local thermal non-equilibrium the total average Nusselt number is an increasing function of the interphase heat transfer coefficient and the porous layer thickness, while the average heat source temperature decreases with the Darcy number and viscosity variation parameter.

Originality/value

An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyze unsteady natural convection within a partially porous cavity using the local thermal non-equilibrium model in the presence of a local heat-generating solid element. The results would benefit scientists and engineers to become familiar with the analysis of convective heat transfer in enclosures with local heat-generating heaters and porous layers, and the way to predict the heat transfer rate in advanced technical systems, in industrial sectors including transportation, power generation, chemical sectors and electronics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 January 2016

Jawali C Umavathi, A J Chamkha and Syed Mohiuddin

The purpose of this paper is to investigate the effect of exponential viscosity-temperature relation, exponential thermal conductivity-temperature relation and the combined…

Abstract

Purpose

The purpose of this paper is to investigate the effect of exponential viscosity-temperature relation, exponential thermal conductivity-temperature relation and the combined effects of variable viscosity and variable thermal conductivity on steady free convection flow of viscous incompressible fluid in a vertical channel.

Design/methodology/approach

The governing equations are solved analytically using regular perturbation method. The analytical solutions are valid for small variations of buoyancy parameter and the solutions are found up to first order for variable viscosity. Since the analytical solutions have a restriction on the values of perturbation parameter and also on the higher order solutions, the authors resort to numerical method which is Runge-Kutta fourth order method.

Findings

The skin friction coefficient and the Nusselt number at both the plates are derived, discussed and their numerical values for various values of physical parameters are presented in tables. It is found that an increase in the variable viscosity enhances the flow and heat transfer, whereas an increase in the variable thermal conductivity suppresses the flow and heat transfer for variable viscosity, variable thermal conductivity and their combined effect.

Originality/value

This research is relatively original as, to the best of the authors’ knowledge, not much work is done on the considered problem with variable properties.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 September 2021

Abdelraheem M. Aly, Noura Alsedais and Hakan F. Oztop

The purpose of this study is to use the incompressible smoothed particle hydrodynamics method to examine the influences of a magnetic field on the double-diffusive convection…

Abstract

Purpose

The purpose of this study is to use the incompressible smoothed particle hydrodynamics method to examine the influences of a magnetic field on the double-diffusive convection caused by a rotating circular cylinder with paddles within a square cavity filled by a nanofluid.

Design/methodology/approach

The cavity is saturated by two wavy layers of non-Darcy porous media with a variable amplitude parameter. The embedded circular cylinder with paddles carrying T_h and C_h is rotating around the cavity center by a uniform circular velocity.

Findings

The lineaments of nanofluid velocity and convective flow, as well as the mean of Nusselt and Sherwood numbers, are represented below the variations on the frequency parameter, amplitude parameter of the wavy porous layers, Darcy parameter, nanoparticles parameter, Hartmann number and Ryleigh number. The performed simulations showed the role of paddles mounted on circular cylinders for enhancing the transmission of heat and mass within a cavity. The wavy porous layers at the lower Darcy parameter are playing as a blockage for the nanofluid flow within the porous area. Increasing the concentration of the nanoparticles to 6% reduces the maximum flow speed by 8.97% and maximum streamlines |ψ|max by 10.76%. Increasing Hartmann number to 100 reduces the maximum flow speed by 65.83% and |ψ|max by 75.54%.

Originality/value

The novelty of this work is to examine the effects of an inclined magnetic field and rotating novel shape of a circular cylinder with paddles on the transmission of heat/mass in the interior of a nanofluid-filled cavity saturated by undulating porous medium layers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Access

Year

Content type

Article (5)
1 – 5 of 5