Search results
1 – 3 of 3Cezary Galinski, Grzegorz Krysztofiak, Marek Miller, Pawel Ruchala, Marek Kalski, Mateusz Lis, Adam Dziubinski, Krzysztof Bogdanski, Lukasz Stefanek and Jaroslaw Hajduk
The purpose of this paper is to present the methodology and approach adapted to conduct a wind tunnel experiment on the inverted joined-wing airplane flying model together with…
Abstract
Purpose
The purpose of this paper is to present the methodology and approach adapted to conduct a wind tunnel experiment on the inverted joined-wing airplane flying model together with the results obtained.
Design/methodology/approach
General assumptions underlying the dual-use model design are presented in this paper. The model was supposed to be used for both wind tunnel tests and flight tests that significantly drive its size and internal structure. Wind tunnel tests results compared with the outcome of computational fluid dynamics (CFD) were used to assess airplane flying qualities before the maiden flight was performed.
Findings
Extensive data about the aerodynamic characteristics of the airplane were collected. Clean configurations in symmetric and asymmetric cases and also configurations with various control surface deflections were tested.
Practical implications
The data obtained experimentally made it possible to predict the performance and stability properties of the unconventional airplane and to draw conclusions on improvements in further designs of this configuration.
Originality/value
The airplane described in this paper differs from frequently analyzed joined-wing configurations, as it boasts a front lifting surface attached at the top of the fuselage, whereas the aft one is attached at the bottom. The testing technique involving the application of a dual-use model is also innovative.
Details
Keywords
Miroslaw Rodzewicz, Dominik Glowacki, Tomasz Szczepanik and Jaroslaw Hajduk
The purpose of this paper is to describe the results of investigations of parachute rescue systems (PRS) for light gyrocopters.
Abstract
Purpose
The purpose of this paper is to describe the results of investigations of parachute rescue systems (PRS) for light gyrocopters.
Design/methodology/approach
Although the investigations were conducted in both stages simultaneously, i.e. experimental mechanics approach and numerical simulations, the paper is focussed mainly on the experimental part of the work. To ensure the safety of experimental works (i.e. for both experimenters and bystanders), the authors applied unmanned, remotely controlled scale models of autogyro for the PRS testing in the air.
Findings
The critical problem for successful use of the PRS is that the rotation of the rotor blades must be stopped when the main parachute opens, otherwise the influence of the rotor on the improper opening process of the parachute may cause the whole PRS to become useless.
Research limitations/implications
The existing regulations for the use of unmanned aircraft impose the limitation upon the organisation of in-flight tests of PRS, i.e. the maximum take-off mass of the tested gyrocopter models is limited, and a full-scale test needs the approval of European Aviation Safety Agency (EASA).
Practical implications
The research contributes to increasing the safety level for gyrocopter users. The authors elaborated the original PRS, which currently is in the process of patenting.
Originality/value
Originality of the work consists of both an innovative PRS, which has never been tested before, and the results of experimental investigations, which cover both ground tests carried on static or moving stands and in-flight testing.
Details
Keywords
Agnieszka Kwiek, Cezary Galinski, Krzysztof Bogdański, Jaroslaw Hajduk and Andrzej Tarnowski
According to the study of the space flight market, there is a demand for space suborbital flights including commercial tourist flights. However, one of the challenges is to design…
Abstract
Purpose
According to the study of the space flight market, there is a demand for space suborbital flights including commercial tourist flights. However, one of the challenges is to design a mission and a vehicle that could offer flights with relatively low G-loads. The project of the rocket-plane in a strake-wing configuration was undertaken to check if such a design could meet the FAA recommendation for this kind of flight. The project concept assumes that the rocket plane is released from a slowly flying carrier plane, then climbs above 100 kilometers above sea level and returns in a glide flight using a vortex lift generated by the strake-wing configuration. Such a mission has to include a flight transition during the release and return phases which might not be comfortable for passengers. Verification if FAA recommendation is fulfilled during these transition maneuvers was the purpose of this study.
Design/methodology/approach
The project was focused on the numerical investigation of a possibility to perform transition maneuvers mentioned above in a passenger-friendly way. The numerical simulations of a full-scale rocket-plane were performed using the simulation and dynamic stability analyzer (SDSA) software package. The influence of an elevator deflection change on flight parameters was investigated in two cases: a transition from the steep descent at high angles of attack to the level glide just after rocket-plane release from the carrier and an analogous transition after re-entry to the atmosphere. In particular, G-loads and G-rates were analyzed.
Findings
As a result, it was found that the values of these parameters satisfied the specific requirements during the separation and transition from a steep descent to gliding. They would be acceptable for an average passenger.
Research limitations/implications
To verify the modeling approach, a flight test campaign was performed. During the experiment, a rocket-plane scaled model was released from the RC model helicopter. The rocket-plane model was geometrically similar only. Froude scales were not applied because they would cause excessive technical complications. Therefore, a separate simulation of the experiment with the application of the scaled model was performed in the SDSA software package. Results of this simulation appeared to be comparable to flight test results so it can be concluded that results for the full-scale rocket-plane simulation are also realistic.
Practical implications
It was proven that the rocket-plane in a strake-wing configuration could meet the FAA recommendation concerning G-loads and G rates during suborbital flight. Moreover, it was proven that the SDSA software package could be applied successfully to simulate flight characteristics of airplanes flying at angles of attack not only lower than stall angles but also greater than stall angles.
Social implications
The application of rocket-planes in a strake-wing configuration could make suborbital tourist flights more popular, thus facilitating the development of manned space flights and contributing to their cost reduction. That is why it was so important to prove that they could meet the FAA recommendation for this kind of service.
Originality/value
The original design of the rocket plane was analyzed. It is equipped with an optimized strake wing and is controlled with oblique, all moving, wingtip plates. Its post-stall flight characteristics were simulated with the application of the SDSA software package which was previously validated only for angles of attack smaller than stall angle. Therefore, experimental validation was necessary. However, because of excessive technical problems caused by the application of Froude scales it was not possible to perform a conventional test with a dynamically scaled model. Therefore, the geometrically scaled model was built and flight tested. Then a separate simulation of the experiment with the application of this model was performed. Results of this separate simulation were compared with the results of the flight test. This comparison allowed to draw the conclusion on the applicability of the SDSA software for post-stall analyzes and, indirectly, on the applicability of the proposed rocket-plane for tourist suborbital flights. This approach to the experimental verification of numerical simulations is quite unique. Finally, a quite original method of the model launching during flight test experiment was applied.
Details