Search results

1 – 10 of over 25000
Content available
Article
Publication date: 23 May 2023

Russell Nelson, Russell King, Brandon M. McConnell and Kristin Thoney-Barletta

The purpose of this study was to create an air movement operations planning model to rapidly generate air mission request (AMR) assignment and routing courses of action (COA) in…

Abstract

Purpose

The purpose of this study was to create an air movement operations planning model to rapidly generate air mission request (AMR) assignment and routing courses of action (COA) in order to minimize unsupported AMRs, aircraft utilization and routing cost.

Design/methodology/approach

In this paper, the US Army Aviation air movement operations planning problem is modeled as a mixed integer linear program (MILP) as an extension of the dial-a-ride problem (DARP). The paper also introduces a heuristic as an extension of a single-vehicle DARP demand insertion algorithm to generate feasible solutions in a tactically useful time period.

Findings

The MILP model generates optimal solutions for small problems (low numbers of AMRs and small helicopter fleets). The heuristic generates near-optimal feasible solutions for problems of various sizes (up to 100 AMRs and 10 helicopter team fleet size) in near real time.

Research limitations/implications

Due to the inability of the MILP to produce optimal solutions for mid- and large-sized problems, this research is limited in commenting on the heuristic solution quality beyond the numerical experimentation. Additionally, the authors make several simplifying assumptions to generalize the average performance and capabilities of aircraft throughout a flight.

Originality/value

This research is the first to solve the US Army Aviation air movement operations planning problem via a single formulation that incorporates multiple refuel nodes, minimization of unsupported demand by priority level, demand time windows, aircraft team utilization penalties, aircraft team time windows and maximum duration and passenger ride time limits.

Details

Journal of Defense Analytics and Logistics, vol. 7 no. 1
Type: Research Article
ISSN: 2399-6439

Keywords

Content available
Article
Publication date: 26 October 2021

Dave C. Longhorn, Joshua R. Muckensturm and Shelby V. Baybordi

This paper recommends new criteria for selecting seaports of embarkation during military deployments. Most importantly, this research compares the current port selection…

Abstract

Purpose

This paper recommends new criteria for selecting seaports of embarkation during military deployments. Most importantly, this research compares the current port selection criterion, which is to select the seaport with the shortest inland transport time from the deploying installation, to the proposed port selection criteria, which are to select the seaport based on the shortest combined inland and oceanic transit time to the destination theater.

Design/methodology/approach

The authors construct an original integer program to select seaports that minimize the expected delivery timeline for a set of notional, but realistic, deployment requirements. The integer program is solved considering the current as well as the proposed port selection criteria. The solutions are then compared using paired-samples t-tests to assess the statistical significance of the port selection criteria.

Findings

This work suggests that the current port selection criterion results in a 10–13% slower delivery of deploying forces as compared to the proposed port selection criteria.

Research limitations/implications

This work assumes deterministic inland transit times, oceanic transit times, and seaport processing rates. Operational fluctuations in transit times and processing rates are not expected to change the findings from this research.

Practical implications

This research provides evidence that the current port selection criterion for selecting seaports for military units deploying from the Continental United States is suboptimal. More importantly, logistics planners could use these recommended port selection criteria to reduce the expected delivery timelines during military deployments.

Originality/value

Several military doctrinal references suggest that planners select seaports based on habitual installation-to-port pairings, especially for early deployers. This work recommends a change to the military's current port selection process based on empirical analyses that show improvements to deployment timelines.

Details

Journal of Defense Analytics and Logistics, vol. 5 no. 2
Type: Research Article
ISSN: 2399-6439

Keywords

Content available
Article
Publication date: 10 May 2023

Pasquale Legato and Rina Mary Mazza

An integrated queueing network focused on container storage/retrieval operations occurring on the yard of a transshipment hub is proposed. The purpose of the network is to support…

Abstract

Purpose

An integrated queueing network focused on container storage/retrieval operations occurring on the yard of a transshipment hub is proposed. The purpose of the network is to support decisions related to the organization of the yard area, while also accounting for operations policies and times on the quay.

Design/methodology/approach

A discrete-event simulation model is used to reproduce container handling on both the quay and yard areas, along with the transfer operations between the two. The resulting times, properly estimated by the simulation output, are fed to a simpler queueing network amenable to solution via algorithms based on mean value analysis (MVA) for product-form networks.

Findings

Numerical results justify the proposed approach for getting a fast, yet accurate analytical solution that allows carrying out performance evaluation with respect to both organizational policies and operations management on the yard area.

Practical implications

Practically, the expected performance measures on the yard subsystem can be obtained avoiding additional time-expensive simulation experiments on the entire detailed model.

Originality/value

As a major takeaway, deepening the MVA for generally distributed service times has proven to produce reliable estimations on expected values for both user- and system-oriented performance metrics.

Details

Maritime Business Review, vol. 8 no. 4
Type: Research Article
ISSN: 2397-3757

Keywords

Open Access
Article
Publication date: 26 March 2024

Manuel Rossetti, Juliana Bright, Andrew Freeman, Anna Lee and Anthony Parrish

This paper is motivated by the need to assess the risk profiles associated with the substantial number of items within military supply chains. The scale of supply chain management…

Abstract

Purpose

This paper is motivated by the need to assess the risk profiles associated with the substantial number of items within military supply chains. The scale of supply chain management processes creates difficulties in both the complexity of the analysis and in performing risk assessments that are based on the manual (human analyst) assessment methods. Thus, analysts require methods that can be automated and that can incorporate on-going operational data on a regular basis.

Design/methodology/approach

The approach taken to address the identification of supply chain risk within an operational setting is based on aspects of multiobjective decision analysis (MODA). The approach constructs a risk and importance index for supply chain elements based on operational data. These indices are commensurate in value, leading to interpretable measures for decision-making.

Findings

Risk and importance indices were developed for the analysis of items within an example supply chain. Using the data on items, individual MODA models were formed and demonstrated using a prototype tool.

Originality/value

To better prepare risk mitigation strategies, analysts require the ability to identify potential sources of risk, especially in times of disruption such as natural disasters.

Details

Journal of Defense Analytics and Logistics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2399-6439

Keywords

Content available
Article
Publication date: 15 June 2017

Jianfeng Zheng, Cong Fu and Haibo Kuang

This paper aims to investigate the location of regional and international hub ports in liner shipping by proposing a hierarchical hub location problem.

3334

Abstract

Purpose

This paper aims to investigate the location of regional and international hub ports in liner shipping by proposing a hierarchical hub location problem.

Design/methodology/approach

This paper develops a mixed-integer linear programming model for the authors’ proposed problem. Numerical experiments based on a realistic Asia-Europe-Oceania liner shipping network are carried out to account for the effectiveness of this model.

Findings

The results show that one international hub port (i.e. Rotterdam) and one regional hub port (i.e. Zeebrugge) are opened in Europe. Two international hub ports (i.e. Sokhna and Salalah) are located in Western Asia, where no regional hub port is established. One international hub port (i.e. Colombo) and one regional hub port (i.e. Cochin) are opened in Southern Asia. One international hub port (i.e. Singapore) and one regional hub port (i.e. Jakarta) are opened in Southeastern Asia and Australia. Three international hub ports (i.e. Hong Kong, Shanghai and Yokohama) and two regional hub ports (i.e. Qingdao and Kwangyang) are opened in Eastern Asia.

Originality/value

This paper proposes a hierarchical hub location problem, in which the authors distinguish between regional and international hub ports in liner shipping. Moreover, scale economies in ship size are considered. Furthermore, the proposed problem introduces the main ports.

Details

Maritime Business Review, vol. 2 no. 2
Type: Research Article
ISSN: 2397-3757

Keywords

Content available
Article
Publication date: 1 February 2021

Ali Cheaitou, Sadeque Hamdan and Rim Larbi

This paper aims to examine containership routing and speed optimization for maritime liner services. It focuses on a realistic case in which the transport demand, and consequently…

1039

Abstract

Purpose

This paper aims to examine containership routing and speed optimization for maritime liner services. It focuses on a realistic case in which the transport demand, and consequently the collected revenue from the visited ports depend on the sailing speed.

Design/methodology/approach

The authors present an integer non-linear programming model for the containership routing and fleet sizing problem, in which the sailing speed of every leg, the ports to be included in the service and their sequence are optimized based on the net line's profit. The authors present a heuristic approach that is based on speed discretization and a genetic algorithm to solve the problem for large size instances. They present an application on a line provided by COSCO in 2017 between Asia and Europe.

Findings

The numerical results show that the proposed heuristic approach provides good quality solutions after a reasonable computation time. In addition, the demand sensitivity has a great impact on the selected route and therefore the profit function. Moreover, the more the demand is sensitive to the sailing speed, the higher the sailing speed value.

Research limitations/implications

The vessel carrying capacity is not considered in an explicit way.

Originality/value

This paper focuses on an important aspect in liner shipping, i.e. demand sensitivity to sailing speed. It brings a novel approach that is important in a context in which sailing speed strategies and market volatility are to be considered together in network design. This perspective has not been addressed previously.

Details

Maritime Business Review, vol. 6 no. 3
Type: Research Article
ISSN: 2397-3757

Keywords

Content available
Article
Publication date: 4 December 2019

Etsuko Nishimura

To achieve a high container handling efficiency at transshipment hub ports, there are a variety of scheduling problem as ship-to-berth assignment (BAP), container-to-yard…

1887

Abstract

Purpose

To achieve a high container handling efficiency at transshipment hub ports, there are a variety of scheduling problem as ship-to-berth assignment (BAP), container-to-yard arrangement (YAP), etc. As it is difficult to acquire the actual data of an existing terminal under various circumstances, this study aims to develop the time estimation model of container handling. Additionally, to achieve an efficient handling of containers at the yard, this study proposes the way to optimize the yard arrangement along with the berth allocation simultaneously by using estimated handling time.

Design/methodology/approach

To obtain the handling time based on various situations of the terminal operated, the discrete simulation model of container handling is constructed. The model to estimate the handling time of a quay crane assigned to a relevant ship by multiple regression analysis is developed. To find a feasible solution to minimize the total service time which includes YAP and BAP simultaneously, a genetic algorithm based on heuristics is developed.

Findings

The proposed regression model has high performance to estimate the time spent of container handling. In the total service time, the proposed approach outperformed the existing 2-step process approach.

Originality/value

As it is difficult to acquire the actual information of an existing marine terminal under various circumstances, the paper contains a regression model to estimate the container handling time based on simulation data, and the regression model is used in an optimization model to minimize the ship turnaround time.

Details

Maritime Business Review, vol. 5 no. 1
Type: Research Article
ISSN: 2397-3757

Keywords

Content available
Article
Publication date: 8 November 2023

Ignacio Del Rosal

Liner shipping plays a crucial role in facilitating the movement of manufactured goods around the world. While previous literature has shown that liner shipping is an important…

Abstract

Purpose

Liner shipping plays a crucial role in facilitating the movement of manufactured goods around the world. While previous literature has shown that liner shipping is an important trade driver, potential differences across trade routes and world regions have not as yet been explored. This paper examines whether the impact of liner shipping on bilateral trade flows differs significantly across world regions, as well as exploring other geographical patterns.

Design/methodology/approach

Using state-of-the-art gravity modelling, this paper investigates the impact of the UNCTAD's Liner Shipping Bilateral Connectivity Index on bilateral trade in manufactured goods using a comprehensive database of disaggregated trade data for the period from 2006 to 2019.

Findings

The results show that the trade effect of liner shipping is greater in long-distance and interregional bilateral flows. For some regions, such as North America and Oceania, the effect is greater than the world average, while for others, such as Africa and South America, the effect is significantly smaller. The trade effects of liner shipping connectivity on the main east–west routes are average, but clear asymmetry emerges when analysing China's inward and outward trade flows separately.

Originality/value

The results of this paper show that the major east–west routes determine the baseline trade effects of liner shipping, demonstrate that some north–south trades such as those involving Oceania generate larger trade effects and confirm that the trade effects of liner shipping can be improved for some world regions such as South America and Africa.

Details

Maritime Business Review, vol. 9 no. 1
Type: Research Article
ISSN: 2397-3757

Keywords

Open Access
Article
Publication date: 23 June 2021

Yousaf Ali, Khaqan Zeb, Abdul Haseeb Khan Babar and Muhammad Asees Awan

The purpose of this research is to identify major barriers to the implementation of reverse logistics (RL). Also, the study addresses best practices among reuse, remanufacture…

1792

Abstract

Purpose

The purpose of this research is to identify major barriers to the implementation of reverse logistics (RL). Also, the study addresses best practices among reuse, remanufacture, recycling, refurbishment and repair as alternatives for RL processes.

Design/methodology/approach

This study targets supply chain management experts for their opinions regarding the identification of critical barriers and alternatives for RL implementation. Their opinions were extracted through a Web questionnaire based on 14 criteria with 5 alternatives. The tools of multi-criteria decision-making are used for analysis, i.e. fuzzy VIKOR and fuzzy TOPSIS.

Findings

The results indicate that lack of recognition of competitive advantage to be gained through RL practice is the most critical barrier to RL implementation. The least barrier or major facilitator for RL is “supportive initiative for end-of-life products.” The top-ranked alternative in this study is reuse followed by remanufacturing. The least important alternative is “repair” in the case of Pakistan. These alternatives are ranked based on “q values” derived through fuzzy VIKOR.

Research limitations/implications

The results of this study can only be generalized for the manufacturing sector of Pakistan during the period of the study.

Practical implications

The findings of this study will assist managers in deploying the best practices concerning RL.

Originality/value

Fuzzy VIKOR and fuzzy TOPSIS have not been applied to RL alternatives in previous research.

Details

Journal of Defense Analytics and Logistics, vol. 5 no. 1
Type: Research Article
ISSN: 2399-6439

Keywords

Content available
Article
Publication date: 10 December 2020

Dave C. Longhorn and John Dale Stobbs

This paper aims to propose two solution approaches to determine the number of ground transport vehicles that are required to ensure the on-time delivery of military equipment…

Abstract

Purpose

This paper aims to propose two solution approaches to determine the number of ground transport vehicles that are required to ensure the on-time delivery of military equipment between origin and destination node pairs in some geographic region, which is an important logistics problem at the US Transportation Command.

Design/methodology/approach

The author uses a mathematical program and a traditional heuristic to provide optimal and near-optimal solutions, respectively. The author also compares the approaches for random, small-scale problems to assess the quality and computational efficiency of the heuristic solution, and also uses the heuristic to solve a notional, large-scale problem typical of real problems.

Findings

This work helps analysts identify how many ground transport vehicles are needed to meet cargo delivery requirements in any military theater of operation.

Research limitations/implications

This research assumes all problem data is deterministic, so it does not capture variations in requirements or transit times between nodes.

Practical implications

This work provides prescriptive details to military analysts and decision-makers in a timely manner. Prior to this work, insights for this type of problem were generated using time-consuming simulation taking about a week and often involving trial-and-error.

Originality/value

This research provides new methods to solve an important logistics problem. The heuristic presented in this paper was recently used to provide operational insights about ground vehicle requirements to support a geographic combatant command and to inform decisions for railcar recapitalization within the US Army.

Details

Journal of Defense Analytics and Logistics, vol. 5 no. 1
Type: Research Article
ISSN: 2399-6439

Keywords

1 – 10 of over 25000