Search results

1 – 10 of 12
Article
Publication date: 5 June 2017

Anna Katarzyna Dabrowska, Grazyna Bartkowiak, Jagna Karcz and Iwona Frydrych

The purpose of this paper is to compare morphological and physical features of three kinds of materials intended for the insulating layer in the clothing protecting…

Abstract

Purpose

The purpose of this paper is to compare morphological and physical features of three kinds of materials intended for the insulating layer in the clothing protecting against cold – high-bulk non-woven, goose down (GD) and duck down (DD).

Design/methodology/approach

Comparison of thermal performance of developed textile systems with the non-woven, GD and DD content was based on basic biophysical properties related to comfort sensations of the user such as thermal resistance, water vapor resistance and air permeability. In this study, light microscopy and scanning electron microscopy methods were employed to visualize the surface and internal structure of non-woven, GD and DD samples.

Findings

The paper indicates the advantages and disadvantages of each of selected insulating material. For the down samples, significantly higher thermal resistance in a dry state than for the non-woven samples can be achieved. Meanwhile, textile systems with the non-woven provide lower value of water vapor resistance. The selected textile systems for the research were characterized by a comparable air permeability.

Originality/value

This paper allows for an evaluation of high-bulk non-woven, DD and GD samples in terms of providing optimal thermal performance in clothing protecting against cold.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 3 September 2019

Pamela Miśkiewicz, Iwona Frydrych and Wojciech Pawlak

The purpose of this paper is to present the influence of modifying the fabric surface made from basalt fibers by the magnetron sputtering of chromium and aluminum layers…

Abstract

Purpose

The purpose of this paper is to present the influence of modifying the fabric surface made from basalt fibers by the magnetron sputtering of chromium and aluminum layers on its resistance to contact heat and comfort properties.

Design/methodology/approach

In order to modify the surface of basalt fabric, the process of physical deposition from the gas phase was used. It relies on creating a coating on a selected substrate by applying physical atoms, molecules or ions of specific chemical compounds. The trial of modification was carried out using the magnetron sputtering method due to the material versatility, application flexibility and ability to apply layers on substrates of various sizes and properties.

Findings

The findings obtained regarding the heat resistance to contact heat and thermal insulation (comfort) properties show different values depending on the type of metal deposited and the thickness of coating layer. It was found that the modification of basalt fabric surface at the micrometer level changes the tested parameters.

Research limitations/implications

This paper presents the results of resistance to contact heat and thermal insulation properties only for the twill fabric made of basalt fiber. The surface modification of fabric was carried out using the chromium and aluminum of two values of layer thickness (1 and 5 µm).

Originality/value

So far, no tests have been carried out to modify the surface of fabric made from basalt fiber yarns using the magnetron sputtering method. In addition, it has not been studied, how the modification of fabric affects its resistance to contact heat and thermophysiological properties.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 August 2016

Iwona Frydrych and Agnieszka Greszta

Seam efficiency plays an important role for obtaining a desired seam quality. Therefore, this issue is often referred in research papers. The purpose of this paper is to…

Abstract

Purpose

Seam efficiency plays an important role for obtaining a desired seam quality. Therefore, this issue is often referred in research papers. The purpose of this paper is to determine the seam strength and efficiency as well as examining, if and how such factors as: a kind of fabric, kind of thread, kind of seam and the stitch density influence the transverse seam strength and the seam efficiency.

Design/methodology/approach

For research four types of polyester/wool fabrics having different structural parameters and two types of polyester sewing threads were used. Three types of seam were made. The fabric samples were sewn using lockstitch with three different stitch densities. Obtained in this way seams were tested on the tensile machine. The influence of individual factors on the seam strength and its efficiency was assessed statistically using a multivariate variance analysis (ANOVA).

Findings

The findings of this study revealed that the independent variable – stitch density affect significantly of the seam strength as well as its efficiency. Seam strength and seam efficiency values increase with the increase stitch density. Moreover, the variance analysis showed that a kind of fabric also is a statistically significant factor for the seam efficiency and its strength. Furthermore, in the case of seam efficiency it is also important to the stitch direction. However, the study did not show an impact of kind of thread and kind of seam on dependent variables: the seam strength and its efficiency.

Research limitations/implications

Due to the fact that this paper focuses on the seams made only on wool/polyester fabrics with two the most popular weaves, involving only two sewing PES threads, the conclusions presented in this paper are valid only to this assortment and cannot be generalized.

Originality/value

So far, it has not been taken research on the effect of seams with the different number of sewn layers on the seam strength and efficiency. This issue has been taken in this work.

Details

International Journal of Clothing Science and Technology, vol. 28 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 15 November 2011

George K. Stylios

Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched…

Abstract

Examines the sixteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 23 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 June 2015

Iwona Frydrych and Małgorzata Matusiak

The purpose of this paper is to investigate the relationship between the formability of cotton and cotton/polyester woven fabrics and their selected properties: weft…

Abstract

Purpose

The purpose of this paper is to investigate the relationship between the formability of cotton and cotton/polyester woven fabrics and their selected properties: weft density, weave and a way of finishing. It shows how the mentioned properties influence fabric formability and analyze a statistical significance of investigated relationships.

Design/methodology/approach

In paper two groups of cotton and cotton/polyester woven fabrics of different structure and a way of finishing have been measured in the range of their basic structural properties as well as bending rigidity and initial Young’s modulus. Formability of investigated fabrics has been calculated on the basis of bending rigidity and initial Young’s modulus. Next, ANOVA has been performed in order to analyze the relationships between the weft density, weave and a way of finishing of woven fabrics and their formability.

Findings

The paper shows that all selected properties of woven fabrics significantly influence their formability as well as that there is statistically significant interaction between mentioned independent factors. It provides empirical results confirming that the influence of raw material composition of investigated cotton and cotton/polyester woven fabrics on the formability of fabrics is statistically insignificant.

Research limitations/implications

Results of investigations can be applied for cotton and cotton-like woven fabrics.

Practical implications

The paper includes implications for woven fabric engineering from the point of view of achieving the expected fabric formability.

Social implications

The results enables the choice of appropriate fabric for the given clothing.

Originality/value

This paper fulfills an identified need to study how the formability of woven fabrics can be shaped by an appropriate selection of their structure and a way of finishing.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 June 2005

Beata Witkowska and Iwona Frydrych

The state‐of‐the‐art of existing methods of tear resistance (static and dynamic) of clothing has been described, also presented are the parameters of static tear…

863

Abstract

Purpose

The state‐of‐the‐art of existing methods of tear resistance (static and dynamic) of clothing has been described, also presented are the parameters of static tear resistance for protective and work clothing depending on its application.

Design/methodology/approach

For chosen group of fabrics the introduction of a new parameter of dynamic tear resistance was proposed. For research, five static tear test methods and the dynamic one were chosen. In order to find the relationship between the results of mean tear forces for the six described methods Kendall's agreement coefficient was calculated. The comparative measurements for results of static tear resistance and dynamic tear resistance for protective and work clothing were carried out. On the basis of this, the value of tear dynamic force for these fabrics was established.

Findings

When establishing the criteria for the tear strength for protective and work clothing, the most significant was fabric end‐use and the minimal value of tear strength associated.

Practical implications

The value of dynamic tear resistance can be the criterion for assessment of fabrics with regard to textiles exposed to tearing during application. It was the first comparative analysis of the measurement of tear resistance methods.

Originality/value

Investigating test methods for the assessment of clear resistance.

Details

International Journal of Clothing Science and Technology, vol. 17 no. 3/4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 September 2015

Rafal Hrynyk and Iwona Frydrych

– The purpose of this paper is to check an applicability of aluminized basalt fabrics for production of gloves protecting simultaneously against thermal and mechanical factors.

Abstract

Purpose

The purpose of this paper is to check an applicability of aluminized basalt fabrics for production of gloves protecting simultaneously against thermal and mechanical factors.

Design/methodology/approach

Six variants of protective gloves were manufactured using two different glove constructions: more simple and cheaper with the anatomical thumb arrangement (model A), and more ergonomic one with so called “distance gussets” (model B). Aluminized basalt fabrics were contained in the back side of all variants and in only one variant of palm side. Then the protective properties against thermal and mechanical factors were measured according to the up-to-date standards.

Findings

The fulfillment of contact heat requirement was achieved for all glove variants at 100°C. Application of aluminized basalt fabrics in the glove back side allowed obtaining the fourth performance level in the case of resistance to small metal splashes and assuring the highest protection against the radiant heat and small metal splashes. Fulfillment of standard requirements for all examined mechanical parameters was achieved and significantly higher values than reqired for the highest performance level were registered.

Research limitations/implications

The further research including upscalling strategy as well as industrial conditions requirements should be taking into account for basalt textiles development. Moreover functionalization of basalt yarns and fabrics seems to be promising feature.

Practical implications

The preliminary utility trials were done and registered results are very promising, shows that this kind of gloves will be cheaper than produced so far and could be used in the glass, welder companies.

Social implications

The basalt textiles applied for protective gloves or other personal protective equipment can ensure safety at work for end users operating in mechanical and thermal risk scenarios.

Originality/value

Up till now the basalt fabrics have not been recognized as a material for the personal protective equipment, they were used mostly for technical purposes.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 20 November 2007

George K. Stylios

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched…

1392

Abstract

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 19 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 November 2006

George K. Stylios

Examines the twelfth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1077

Abstract

Examines the twelfth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 18 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 14 November 2008

George K. Stylios

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched…

1180

Abstract

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 12