Search results

11 – 20 of over 20000
Article
Publication date: 19 September 2016

Ziqiang Cui, Qi Wang, Qian Xue, Wenru Fan, Lingling Zhang, Zhang Cao, Benyuan Sun, Huaxiang Wang and Wuqiang Yang

Electrical capacitance tomography (ECT) and electrical resistance tomography (ERT) are promising techniques for multiphase flow measurement due to their high speed, low cost…

1202

Abstract

Purpose

Electrical capacitance tomography (ECT) and electrical resistance tomography (ERT) are promising techniques for multiphase flow measurement due to their high speed, low cost, non-invasive and visualization features. There are two major difficulties in image reconstruction for ECT and ERT: the “soft-field”effect, and the ill-posedness of the inverse problem, which includes two problems: under-determined problem and the solution is not stable, i.e. is very sensitive to measurement errors and noise. This paper aims to summarize and evaluate various reconstruction algorithms which have been studied and developed in the word for many years and to provide reference for further research and application.

Design/methodology/approach

In the past 10 years, various image reconstruction algorithms have been developed to deal with these problems, including in the field of industrial multi-phase flow measurement and biological medical diagnosis.

Findings

This paper reviews existing image reconstruction algorithms and the new algorithms proposed by the authors for electrical capacitance tomography and electrical resistance tomography in multi-phase flow measurement and biological medical diagnosis.

Originality/value

The authors systematically summarize and evaluate various reconstruction algorithms which have been studied and developed in the word for many years and to provide valuable reference for practical applications.

Article
Publication date: 1 June 2006

Mile R. Vujičić

To provide an analysis of transient heat conduction, which is solved using different iterative solvers for graduate and postgraduate students (researchers) which can help them…

1682

Abstract

Purpose

To provide an analysis of transient heat conduction, which is solved using different iterative solvers for graduate and postgraduate students (researchers) which can help them develop their own research.

Design/methodology/approach

Three‐dimensional transient heat conduction in homogeneous materials using different time‐stepping methods such as finite difference (Θ explicit, implicit and Crank‐Nicolson) and finite element (weighted residual and least squared) methods. Iterative solvers used in the paper are conjugate gradient (CG), preconditioned gradient, least square CG, conjugate gradient squared (CGS), preconditioned CGS, bi‐conjugate gradient (BCG), preconditioned BCG, bi‐conjugate gradient stabilized (BCGSTAB), reconditioned BCGSTAB and Gaussian elimination with incomplete Cholesky factorization.

Findings

Provides information on which time‐stepping method is the most accurate, which solver is the fastest to solve a symmetric and positive system of linear matrix equations of all those considered.

Practical implications

Fortran 90 code given as an abstract can be very useful for graduate and postgraduate students to develop their own code.

Originality/value

This paper offers practical help to an individual starting his/her research in the finite element technique and numerical methods.

Details

Engineering Computations, vol. 23 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 August 2019

Lin Li, Jiadong Xiao, Yanbiao Zou and Tie Zhang

The purpose of this paper is to propose a precise time-optimal path tracking approach for robots under kinematic and dynamic constraints to improve the work efficiency of robots…

Abstract

Purpose

The purpose of this paper is to propose a precise time-optimal path tracking approach for robots under kinematic and dynamic constraints to improve the work efficiency of robots and guarantee tracking accuracy.

Design/methodology/approach

In the proposed approach, the robot path is expressed by a scalar path coordinate and discretized into N points. The motion between two neighbouring points is assumed to be uniformly accelerated motion, so the time-optimal trajectory that satisfies constraints is obtained by using equations of uniformly accelerated motion instead of numerical integration. To improve dynamic model accuracy, the Coulomb and viscous friction are taken into account (while most publications neglect these effects). Furthermore, an iterative learning algorithm is designed to correct model-plant mismatch by adding an iterative compensation item into the dynamic model at each discrete point before trajectory planning.

Findings

An experiment shows that compared with the sequential convex log barrier method, the proposed numerical integration-like (NI-like) approach has less computation time and a smoother planning trajectory. Compared with the experimental results before iteration, the torque deviation, tracking error and trajectory execution time are reduced after 10 iterations.

Originality/value

As the proposed approach not only yields a time-optimal solution but also improves tracking performance, this approach can be used for any repetitive robot tasks that require more rapidity and less tracking error, such as assembly.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 December 1998

M.A. Gutierrez, Y.M. Ojanguren and J.J. Anza

The numerical simulation of metal forming processes approximated by means of finite element techniques, require large computational effort, which contradicts the need of…

Abstract

The numerical simulation of metal forming processes approximated by means of finite element techniques, require large computational effort, which contradicts the need of interactivity for industrial applications. This work analyses the computational efficiency of algorithms combining elastoplasticity with finite deformation and contact mechanics, and in particular, the optimum solution of the linear systems to be solved through the incremental‐iterative schemes associated with non linear implicit analysis. A method based on domain decomposition techniques especially adapted to contact problems is presented, as well as the improved performance obtained in the application to hot rolling simulation, as a consequence of bandwidth reduction and the differentiated treatment of subdomains along the non linear analysis.

Details

Engineering Computations, vol. 15 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 October 2019

Yangong Wu, Zheng Qiao, Jiadai Xue, Yutao Liu and Bo Wang

The purpose of this paper is to present a novel numerical approach to analyze the static performance of aerostatic thrust bearings by adopting a general finite element method

Abstract

Purpose

The purpose of this paper is to present a novel numerical approach to analyze the static performance of aerostatic thrust bearings by adopting a general finite element method calculation program.

Design/methodology/approach

The characteristics of a gas film are described by the Reynolds equation and the pressure distribution is solved using the finite element method. A root iterative method is proposed to meet the requirement of the mass-conservation law because multiple pocketed orifice-type restrictors are treated as a series of special boundary conditions.

Findings

The static performance of a rotary table using aerostatic thrust bearings, including load carrying capacity and stiffness, can be predicted by the method; moreover, it can be further confirmed through experiments on the designed rotary table.

Originality/value

The method combining the finite element and root iterative methods is highly accurate and has a low time-cost for analyzing aerostatic thrust bearings with multiple pocketed orifice-type restrictors.

Details

Industrial Lubrication and Tribology, vol. 72 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 2 February 2023

Cheng Wang, Haibo Xie and Huayong Yang

This paper aims to present an iterative path-following method with joint limits to solve the problem of large computation cost, movement exceeding joint limits and poor…

Abstract

Purpose

This paper aims to present an iterative path-following method with joint limits to solve the problem of large computation cost, movement exceeding joint limits and poor path-following accuracy for the path planning of hyper-redundant snake-like manipulator.

Design/methodology/approach

When a desired path is given, new configuration of the snake-like manipulator is obtained through a geometrical approach, then the joints are repositioned through iterations until all the rotation angles satisfy the imposed joint limits. Finally, a new arrangement is obtained through the analytic solution of the inverse kinematics of hyper-redundant manipulator. Finally, simulations and experiments are carried out to analyze the performance of the proposed path-following method.

Findings

Simulation results show that the average computation time is 0.1 ms per step for a hyper-redundant manipulator with 12 degrees of freedom, and the deviation in tip position can be kept below 0.02 mm. Experiments show that all the rotation angles are within joint limits.

Research limitations/implications

Currently , the manipulator is working in open-loop, the elasticity of the driving cable will cause positioning error. In future, close-loop control based on real-time attitude detection will be used in in combination with the path-following method to achieve high-precision trajectory tracking.

Originality/value

Through a series of iterative processes, the proposed method can make the manipulator approach the desired path as much as possible within the joint constraints with high precision and less computation time.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 March 2018

Jun-Hyeok Lee, Seung-Jae Lee and Jung-chun Suh

As the penalized vortex-in-cell (pVIC) method is based on the vorticity-velocity form of the Navier–Stokes equation, the pressure variable is not incorporated in its solution…

Abstract

Purpose

As the penalized vortex-in-cell (pVIC) method is based on the vorticity-velocity form of the Navier–Stokes equation, the pressure variable is not incorporated in its solution procedure. This is one of the advantages of vorticity-based methods such as pVIC. However, dynamic pressure is an essential flow property in engineering problems. In pVIC, the pressure field can be explicitly evaluated by a pressure Poisson equation (PPE) from the velocity and vorticity solutions. How to specify far-field boundary conditions is then an important numerical issue. Therefore, this paper aims to robustly and accurately determine the boundary conditions for solving the PPE.

Design/methodology/approach

This paper introduces a novel non-iterative method for specifying Dirichlet far-field boundary conditions to solve the PPE in a bounded domain. The pressure field is computed using the velocity and vorticity fields obtained from pVIC, and the solid boundary conditions for pressure are also imposed by a penalization term within the framework of pVIC. The basic idea of our approach is that the pressure at any position can be evaluated from its gradient field in a closed contour because the contour integration for conservative vector fields is path-independent. The proposed approach is validated and assessed by a comparative study.

Findings

This non-iterative method is successfully implemented to the pressure calculation of the benchmark problems in both 2D and 3D. The method is much faster than all the other methods tested without compromising accuracy and enables one to obtain reasonable pressure field even for small computation domains that are used regardless of a source distribution (the right-hand side in the Poisson equation).

Originality/value

The strategy introduced in this paper provides an effective means of specifying Dirichlet boundary conditions at the exterior domain boundaries for the pressure Poisson problems. It is very efficient and robust compared with the conventional methods. The proposed idea can also be adopted in other fields dealing with infinite-domain Poisson problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 May 2014

Behrooz Keshtegar and Mahmoud Miri

Generally, iterative methods which have some instability solutions in complex structural and non-linear mechanical problems are used to compute reliability index. The purpose of…

Abstract

Purpose

Generally, iterative methods which have some instability solutions in complex structural and non-linear mechanical problems are used to compute reliability index. The purpose of this paper is to establish a non-linear conjugate gradient (NCG) optimization algorithm to overcome instability solution of the Hasofer-Lind and Rackwitz-Fiessler (HL-RF) method in first-order reliability analysis. The NCG algorithms such as the Conjugate-Descent (CD) and the Liu-Storey (LS) are used for determining the safety index. An algorithm is found based on the new line search in the reliability analysis.

Design/methodology/approach

In the proposed line search for calculating the safety index, search direction is computed by using the conjugate gradient approach and the HL-RF method based on the new and pervious gradient vector of the reliability function. A simple step size is presented for the line search in the proposed algorithm, which is formulated by the Wolfe conditions based on the new and previous safety index results in the reliability analysis.

Findings

From the current work, it is concluded that the proposed NCG algorithm has more efficient, robust and appropriate convergence in comparison with the HL-RF method. The proposed methods can eliminate numerical instabilities of the HL-RF iterative algorithm in highly non-linear performance function and complicated structural limit state function. The NGC optimization is applicable to reliability analysis and it is correctly converged on the reliability index. In the NCG method, the CD algorithm is slightly more efficient than the LS algorithm.

Originality/value

This paper usefully shows how the HL-RF algorithm and the NCG scheme are formulated in first-order reliability analysis. The proposed algorithm is validated from six numerical and structural examples taken from the literature. The HL-RF method is not converged on several non-linear mathematic and complex structural examples, while the two proposed conjugate gradient methods are appropriately converged for all examples. The CD algorithm is converged about twice faster than the LS algorithm in most of the problems. Therefore, application of the NCG method is possible in reliability analysis.

Details

Engineering Computations, vol. 31 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 April 1985

K.X. TAN and H. STEINBIGLER

Computer programs were developed based on the finite element method and the charge simulation method for the calculation of three dimensional electric fields in high voltage…

Abstract

Computer programs were developed based on the finite element method and the charge simulation method for the calculation of three dimensional electric fields in high voltage engineering. A brief description of the applied methods with respect to the special requirements of high voltage engineering is presented. In order to use the specific advantages of the finite element method and the charge simulation method, two procedures combining both methods are proposed: an iterative method and a direct method. For the calculation of three dimensional problems without symmetry the iterative procedure has the advantage that the coupling program is small compared with the field calculation programs and no major changes in these programs are necessary.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 4 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 1 September 1999

H. De Gersem, D. Lahaye, S. Vandewalle and K. Hameyer

Finite element discretizations of low‐frequency, time‐harmonic magnetic problems lead to sparse, complex symmetric systems of linear equations. The question arises which Krylov…

2101

Abstract

Finite element discretizations of low‐frequency, time‐harmonic magnetic problems lead to sparse, complex symmetric systems of linear equations. The question arises which Krylov subspace methods are appropriate to solve such systems. The quasi minimal residual method combines a constant amount of work and storage per iteration step with a smooth convergence history. These advantages are obtained by building a quasi minimal residual approach on top of a Lanczos process to construct the search space. Solving the complex systems by transforming them to equivalent real ones of double dimension has to be avoided as such real systems have spectra that are less favourable for the convergence of Krylov‐based methods. Numerical experiments are performed on electromagnetic engineering problems to compare the quasi minimal residual method to the bi‐conjugate gradient method and the generalized minimal residual method.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 18 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

11 – 20 of over 20000