Search results

1 – 10 of over 1000
Article
Publication date: 8 August 2019

Mattia Filippini, Piergiorgio Alotto and Alessandro Giust

The purpose of this paper is to implement the Anderson acceleration for different formulations of eletromagnetic nonlinear problems and analyze the method efficiency and…

Abstract

Purpose

The purpose of this paper is to implement the Anderson acceleration for different formulations of eletromagnetic nonlinear problems and analyze the method efficiency and strategies to obtain a fast convergence.

Design/methodology/approach

The paper is structured as follows: the general class of fixed point nonlinear problems is shown at first, highlighting the requirements for convergence. The acceleration method is then shown with the associated pseudo-code. Finally, the algorithm is tested on different formulations (finite element, finite element/boundary element) and material properties (nonlinear iron, hysteresis models for laminates). The results in terms of convergence and iterations required are compared to the non-accelerated case.

Findings

The Anderson acceleration provides accelerations up to 75 per cent in the test cases that have been analyzed. For the hysteresis test case, a restart technique is proven to be helpful in analogy to the restarted GMRES technique.

Originality/value

The acceleration that has been suggested in this paper is rarely adopted for the electromagnetic case (it is normally adopted in the electronic simulation case). The procedure is general and works with different magneto-quasi static formulations as shown in the paper. The obtained accelerations allow to reduce the number of iterations required up to 75 per cent in the benchmark cases. The method is also a good candidate in the hysteresis case, where normally the fixed point schemes are preferred to the Newton ones.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 January 2018

Xia Cui, GuangWei Yuan and ZhiJun Shen

This paper aims to provide a well-behaved nonlinear scheme and accelerating iteration for the nonlinear convection diffusion equation with fundamental properties illustrated.

Abstract

Purpose

This paper aims to provide a well-behaved nonlinear scheme and accelerating iteration for the nonlinear convection diffusion equation with fundamental properties illustrated.

Design/methodology/approach

A nonlinear finite difference scheme is studied with fully implicit (FI) discretization used to acquire accurate simulation. A Picard–Newton (PN) iteration with a quadratic convergent ratio is designed to realize fast solution. Theoretical analysis is performed using the discrete function analysis technique. By adopting a novel induction hypothesis reasoning technique, the L (H1) convergence of the scheme is proved despite the difficulty because of the combination of conservative diffusion and convection operator. Other properties are established consequently. Furthermore, the algorithm is extended from first-order temporal accuracy to second-order temporal accuracy.

Findings

Theoretical analysis shows that each of the two FI schemes is stable, its solution exists uniquely and has second-order spatial and first/second-order temporal accuracy. The corresponding PN iteration has the same order of accuracy and quadratic convergent speed. Numerical tests verify the conclusions and demonstrate the high accuracy and efficiency of the algorithms. Remarkable acceleration is gained.

Practical implications

The numerical method provides theoretical and technical support to accelerate resolving convection diffusion, non-equilibrium radiation diffusion and radiation transport problems.

Originality/value

The FI schemes and iterations for the convection diffusion problem are proposed with their properties rigorously analyzed. The induction hypothesis reasoning method here differs with those for linearization schemes and is applicable to other nonlinear problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 March 2020

Mehmet Konar

The purpose of this paper is to present a novel approach based on the artificial bee colony (ABC) algorithm aiming to achieve maximum acceleration and maximum endurance for…

Abstract

Purpose

The purpose of this paper is to present a novel approach based on the artificial bee colony (ABC) algorithm aiming to achieve maximum acceleration and maximum endurance for morphing unmanned aerial vehicle (UAV) design.

Design/methodology/approach

Some of the most important issues in the design of UAV are the design of thrust system and determination of the endurance of the UAV. Although propeller selection is very important for the thrust system design, battery selection has the utmost importance for the determination of UAV endurance. In this study, the calculations of maximum acceleration and endurance required by ZANKA-II during the flight are considered simultaneously. For this purpose, a model based on the ABC algorithm is proposed for the morphing UAV design, aiming to achieve the maximum acceleration and endurance. In the proposed model, the propeller diameter, propeller pitch and battery values used in morphing UAV's power system design are selected as the input parameters; maximum acceleration and endurance are selected as the output parameters. To obtain the maximum acceleration and endurance, the optimum input parameters are determined through the ABC algorithm-based model.

Findings

Considerable improvements on maximum acceleration and endurance of morphing UAV with ABC algorithm-based model are obtained.

Research limitations/implications

The endurance and acceleration due to the thrust are two separate parameters that are not normally proportional to each other. In this study, optimization of UAV’s endurance and acceleration is considered with equal importance.

Practical implications

Using artificial intelligence techniques causes fast and simple optimization for determination of UAV’s endurance and acceleration with equal importance. In the simulation studies with ABC algorithm, satisfactory results are obtained.

Social implications

The results of the study have showed that the proposed approach could be an alternative method for UAV designers.

Originality/value

Providing a new and efficient method saves time and reduces cost in calculations of maximum acceleration and endurance of the UAV.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 November 2007

C.H. Min and W.Q. Tao

This paper aims to accelerate the iteration convergence for elliptic fluid flow problems, so that an under‐relaxation factor control method is developed.

1238

Abstract

Purpose

This paper aims to accelerate the iteration convergence for elliptic fluid flow problems, so that an under‐relaxation factor control method is developed.

Design/methodology/approach

There should be an optimal under‐relaxation factor that can result in the equivalence of the global residual norms of momentum equation u and momentum equation v. The two residual norms of the momentum equations will be equivalent through controlling the velocity under‐relaxation factors, and then the iteration convergence can be accelerated. Two expressions (α=(α0)βγ and α=(α0)(1/β)γ) are proposed to adjust the values of under‐relaxation factors for every n iterations.

Findings

From the five preliminary computations it is found that the value of γ can be larger than 1 and of n can be less than 5 for an open system, and the value of γ should be less than 1 and that of n should be larger than 10 for a closed system. These two pairs of parameters are then used in another five examples. It is found that the saving in CPU times is at least 43.9 percent for the closed system and 67.5 percent for the open system.

Research limitations/implications

When the Re or Ra of the two‐dimensional problems are low, this control method is feasible. More research work is needed in order to apply it in three‐dimensional or high Re or Ra problems.

Originality/value

This method is helpful for the acceleration of iteration convergence in simple problems, and is a preparation for the advanced research in complicated problems.

Details

Engineering Computations, vol. 24 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 March 1987

Richard J. Schmidt and Robert H. Dodds

The computational efficiency of subspace iteration is addressed relative to the data structures adopted for the very large and generally sparse coefficient matrices. The frequent…

Abstract

The computational efficiency of subspace iteration is addressed relative to the data structures adopted for the very large and generally sparse coefficient matrices. The frequent triangulations and matrix multiplications demand that access to the terms in the coefficient matrices be unbiased. Reliance on virtual memory (paging) operating systems with no special considerations for localized data access is not adequate. Specific data structures must be designed that accommodate the needs of the numerical algorithm yet eliminate unnecessary paging. An implementation of the subspace iteration method using hypermatrix data structures is presented. Use of hypermatrices is shown to provide unbiased and localized data access. The various modifications to the conventional formulation are described and an example problem illustrates the potential benefits of the hypermatrix formulation. Possibilities for adapting hypermatrix data structures to new supercomputer architectures are discussed.

Details

Engineering Computations, vol. 4 no. 3
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 2 April 2024

R.S. Vignesh and M. Monica Subashini

An abundance of techniques has been presented so forth for waste classification but, they deliver inefficient results with low accuracy. Their achievement on various repositories…

Abstract

Purpose

An abundance of techniques has been presented so forth for waste classification but, they deliver inefficient results with low accuracy. Their achievement on various repositories is different and also, there is insufficiency of high-scale databases for training. The purpose of the study is to provide high security.

Design/methodology/approach

In this research, optimization-assisted federated learning (FL) is introduced for thermoplastic waste segregation and classification. The deep learning (DL) network trained by Archimedes Henry gas solubility optimization (AHGSO) is used for the classification of plastic and resin types. The deep quantum neural networks (DQNN) is used for first-level classification and the deep max-out network (DMN) is employed for second-level classification. This developed AHGSO is obtained by blending the features of Archimedes optimization algorithm (AOA) and Henry gas solubility optimization (HGSO). The entities included in this approach are nodes and servers. Local training is carried out depending on local data and updations to the server are performed. Then, the model is aggregated at the server. Thereafter, each node downloads the global model and the update training is executed depending on the downloaded global and the local model till it achieves the satisfied condition. Finally, local update and aggregation at the server is altered based on the average method. The Data tag suite (DATS_2022) dataset is used for multilevel thermoplastic waste segregation and classification.

Findings

By using the DQNN in first-level classification the designed optimization-assisted FL has gained an accuracy of 0.930, mean average precision (MAP) of 0.933, false positive rate (FPR) of 0.213, loss function of 0.211, mean square error (MSE) of 0.328 and root mean square error (RMSE) of 0.572. In the second level classification, by using DMN the accuracy, MAP, FPR, loss function, MSE and RMSE are 0.932, 0.935, 0.093, 0.068, 0.303 and 0.551.

Originality/value

The multilevel thermoplastic waste segregation and classification using the proposed model is accurate and improves the effectiveness of the classification.

Article
Publication date: 14 June 2013

Wen‐Tsai Sung and Chia‐Cheng Hsu

This study aims to analyze the inertial weight factor value in the (PSO) algorithm and propose non‐linear weights with decreasing strategy to implement the improved PSO (IPSO…

Abstract

Purpose

This study aims to analyze the inertial weight factor value in the (PSO) algorithm and propose non‐linear weights with decreasing strategy to implement the improved PSO (IPSO) algorithm. Using various types of sensors, combined with ZigBee wireless sensor networks and the TCP/IP network. The GPRS/SMS long‐range wireless network will sense the measured data analysis and evaluation to create more effective monitoring and observation in a regional environment to achieve an Internet of Things with automated information exchange between persons and things.

Design/methodology/approach

This study proposes a wireless sensor network system using ZigBee (PSoC‐1605A) chip, sensor and circuit boards to constitute the IOT system. The IOT system consists of a main coordinator (PSoC‐1605A), smart grid monitoring system, robotic arm detection warning system and temperature and humidity sensor network. The hardware components communicate with each other through wireless transmission. Each node collects data and sends messages to other objects in the network.

Findings

This study employed IPSO to perform information fusion in a multi‐sensor network. The paper shows that IPSO improved the measurement preciseness via weight factors estimated via experimental simulations. The experimental results show that the IPSO algorithm optimally integrates the weight factors, information source fusion reliability, information redundancy and hierarchical structure integration in uncertain fusion cases. The sensor data approximates the optimal way to extract useful information from each fusion data and successfully eliminates noise interference, producing excellent fusion results.

Practical implications

Robotic arm to tilt detection warning system: Several geographic areas are susceptible to severe tectonic plate movement, often generating earthquakes. Earthquakes cause great harm to public infrastructure, and a great threat to high‐tech, high‐precision machinery and production lines. To minimize the extent of earthquake disasters and allow managers to deal with power failures, vibration monitoring system construction can enhance manufacturing process quality and stability. Smart grid monitoring system: The greenhouse effect, global energy shortage and rising cost of traditional energy are related energy efficiency topics that have attracted much attention. The aim of this paper is that real‐time data rendering and analysis can be more effective in understanding electrical energy usage, resulting in a reduction in unnecessary consumption and waste. Temperature and humidity sensor network system: Environmental temperature and humidity monitoring and application of a wide range of precision industrial production lines, laboratories, antique works of art that have a higher standard of environmental temperature and humidity requirements. The environment has a considerable influence on biological lifeforms. The relative importance of environmental management and monitoring is acute.

Originality/value

This paper improves the fixed inertial weight of the original particle swarm optimization (PSO) algorithm. An illustration in the paper indicates that IPSO applies the Internet of Things (IOT) system in monitoring a system via adjusted weight factors better than other existing PSO methods in computing a precise convergence rate for excellent fusion results.

Details

Sensor Review, vol. 33 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 19 December 2019

Ganesh Narayanan, Milan Joshi, Prasun Dutta and Kanak Kalita

Computational fluid dynamics (CFD) technique is the most commonly used numerical approach to simulate fluid flow behaviour. Owing to its computationally, cost-intensive nature CFD…

114

Abstract

Purpose

Computational fluid dynamics (CFD) technique is the most commonly used numerical approach to simulate fluid flow behaviour. Owing to its computationally, cost-intensive nature CFD models may not be easily and quickly deployable. In this regard, this study aims to present a support vector machine (SVM)-based metamodelling approach that can be easily trained and quickly deployed for carrying out large-scale studies.

Design/methodology/approach

Radial basis function and ε^*-insensitive loss function are used as kernel function and loss function, respectively. To prevent overfitting of the model, five-fold cross-validation root mean squared error is used while training the SVM metamodel. Rather than blindly using any SVM tuning parameters, a particle swarm optimisation (PSO) is used to fine-tune them. The developed SVM metamodel is tested using various error metrics on disjoint test data.

Findings

Using the SVM metamodel, a parametric study is conducted to understand the effect of various factors influencing the behaviour of the turbulent fluid flow in the pipe bend with CFD simulation data set. Based on the parametric study carried out, it is seen that the diametric position has the most effect on dimensionless axial velocity, whereas Reynolds number has the least effect.

Originality/value

This paper provides an effective PSO-tuned SVM metamodelling approach, which may be used as a significant cost-saving approach to quickly and accurately estimate fluid flow characteristics that, in general, require the use of expensive CFD models.

Article
Publication date: 6 July 2015

Umadevi Nagalingam, Balaji Mahadevan, Kamaraj Vijayarajan and Ananda Padmanaban Loganathan

The purpose of this paper is to propose a multi-objective particle swarm optimization (MOPSO) algorithm based design optimization of Brushless DC (BLDC) motor with a view to…

Abstract

Purpose

The purpose of this paper is to propose a multi-objective particle swarm optimization (MOPSO) algorithm based design optimization of Brushless DC (BLDC) motor with a view to mitigate cogging torque and enhance the efficiency.

Design/methodology/approach

The suitability of MOPSO algorithm is tested on a 120 W BLDC motor considering magnet axial length, stator slot opening and air gap length as the design variables. It avails the use of MagNet 7.5.1, a Finite Element Analysis tool, to account for the geometry and the non-linearity of material for assuaging an improved design framework and operates through the boundaries of generalized regression neural network (GRNN) to advocate the optimum design. The results of MOPSO are compared with Multi-Objective Genetic Algorithm and Non-dominated Sorting Genetic Algorithm-II based formulations for claiming its place in real world applications.

Findings

A MOPSO design optimization procedure has been enlivened to escalate the performance of the BLDC motor. The optimality in design has been out reached through minimizing the cogging torque, maximizing the average torque and reducing the total losses to claim an increase in the efficiency. The results have been fortified in well-distributed Pareto-optimal planes to arrive at trade-off solutions between different objectives.

Research limitations/implications

The rhetoric theory of multi objective formulations has been reinforced to provide a decisive solution with regard to the choice of the design obtained from Pareto-optimal planes.

Practical implications

The incorporation of a larger number of design variables together with an orientation to thermal and vibration analysis will still go a long way in bringing on board new dimensions to the fold of optimality in the design of BLDC motors.

Originality/value

The proposal offers a new perspective to the design of BLDC motor in the sense it be-hives the facility of a swarm based approach to optimize the parameters in order that it serves to improve its performance. The results of a 120 W motor in terms of lowering the losses, minimizing the cogging torque and maximizing the average torque emphasize the benefits of the GRNN based multi-objective formulation and establish its viability for use in practical applications.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 January 2018

Nurul Ain Abdul Latiff, Hazlee Azil Illias, Ab Halim Abu Bakar, Syahirah Abd Halim and Sameh Ziad Dabbak

Leakage current is one of the factors, which can contribute towards degradation of surge arresters. Thus, the purpose of this paper is to study on leakage current within surge…

Abstract

Purpose

Leakage current is one of the factors, which can contribute towards degradation of surge arresters. Thus, the purpose of this paper is to study on leakage current within surge arresters and improvement on their design.

Design/methodology/approach

In this work, a three-dimensional model geometry of 11 kV zinc oxide surge arrester was designed in finite element analysis and was applied to calculate the leakage current under normal operating condition and being verified with measurement results. The optimisation methods were used to improve the arrester design by minimising the leakage current across the arrester using imperialist competitive algorithm (ICA) and gravitational search algorithm (GSA).

Findings

The arrester design in reducing leakage current was successfully optimised by varying the glass permittivity, silicone rubber permittivity and the width of the ground terminal of the surge arrester. It was found that the surge arrester design obtained using ICA has lower leakage current than GSA and the original design of the surge arrester.

Practical implications

The comparison between measurement and simulation enables factors that affect the mechanism of leakage current in surge arresters to be identified and provides the ideal design of arrester.

Originality/value

Surge arrester design was optimised by ICA and GSA, which has never been applied in past works in designing surge arrester with minimum leakage current.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 1000