Search results

1 – 10 of over 2000
Article
Publication date: 17 July 2023

Youping Lin

The interval multi-objective optimization problems (IMOPs) are universal and vital uncertain optimization problems. In this study, an interval multi-objective grey wolf…

Abstract

Purpose

The interval multi-objective optimization problems (IMOPs) are universal and vital uncertain optimization problems. In this study, an interval multi-objective grey wolf optimization algorithm (GWO) based on fuzzy system is proposed to solve IMOPs effectively.

Design/methodology/approach

First, the classical genetic operators are embedded into the interval multi-objective GWO as local search strategies, which effectively balanced the global search ability and local development ability. Second, by constructing a fuzzy system, an effective local search activation mechanism is proposed to save computing resources as much as possible while ensuring the performance of the algorithm. The fuzzy system takes hypervolume, imprecision and number of iterations as inputs and outputs the activation index, local population size and maximum number of iterations. Then, the fuzzy inference rules are defined. It uses the activation index to determine whether to activate the local search process and sets the population size and the maximum number of iterations in the process.

Findings

The experimental results show that the proposed algorithm achieves optimal hypervolume results on 9 of the 10 benchmark test problems. The imprecision achieved on 8 test problems is significantly better than other algorithms. This means that the proposed algorithm has better performance than the commonly used interval multi-objective evolutionary algorithms. Moreover, through experiments show that the local search activation mechanism based on fuzzy system proposed in this study can effectively ensure that the local search is activated reasonably in the whole algorithm process, and reasonably allocate computing resources by adaptively setting the population size and maximum number of iterations in the local search process.

Originality/value

This study proposes an Interval multi-objective GWO, which could effectively balance the global search ability and local development ability. Then an effective local search activation mechanism is developed by using fuzzy inference system. It closely combines global optimization with local search, which improves the performance of the algorithm and saves computing resources.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 4 April 2024

Chuyu Tang, Hao Wang, Genliang Chen and Shaoqiu Xu

This paper aims to propose a robust method for non-rigid point set registration, using the Gaussian mixture model and accommodating non-rigid transformations. The posterior…

Abstract

Purpose

This paper aims to propose a robust method for non-rigid point set registration, using the Gaussian mixture model and accommodating non-rigid transformations. The posterior probabilities of the mixture model are determined through the proposed integrated feature divergence.

Design/methodology/approach

The method involves an alternating two-step framework, comprising correspondence estimation and subsequent transformation updating. For correspondence estimation, integrated feature divergences including both global and local features, are coupled with deterministic annealing to address the non-convexity problem of registration. For transformation updating, the expectation-maximization iteration scheme is introduced to iteratively refine correspondence and transformation estimation until convergence.

Findings

The experiments confirm that the proposed registration approach exhibits remarkable robustness on deformation, noise, outliers and occlusion for both 2D and 3D point clouds. Furthermore, the proposed method outperforms existing analogous algorithms in terms of time complexity. Application of stabilizing and securing intermodal containers loaded on ships is performed. The results demonstrate that the proposed registration framework exhibits excellent adaptability for real-scan point clouds, and achieves comparatively superior alignments in a shorter time.

Originality/value

The integrated feature divergence, involving both global and local information of points, is proven to be an effective indicator for measuring the reliability of point correspondences. This inclusion prevents premature convergence, resulting in more robust registration results for our proposed method. Simultaneously, the total operating time is reduced due to a lower number of iterations.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 13 February 2024

Andrew Cram, Stephanie Wilson, Matthew Taylor and Craig Mellare

This paper aims to identify and evaluate resolutions to key learning and teaching challenges in very large courses that involve practical mathematics, such as foundational finance.

Abstract

Purpose

This paper aims to identify and evaluate resolutions to key learning and teaching challenges in very large courses that involve practical mathematics, such as foundational finance.

Design/methodology/approach

A design-based research approach is used across three semesters to iteratively identify practical problems within the course and then develop and evaluate resolutions to these problems. Data are collected from both students and teachers and analysed using a mixed-method approach.

Findings

The results indicate that key learning and teaching challenges in large foundational finance courses can be mitigated through appropriate consistency of learning materials; check-your-understanding interactive online content targeting foundational concepts in the early weeks; connection points between students and the coordinator to increase teacher presence; a sustained focus on supporting student achievement within assessments; and signposting relevance of content for the broader program and professional settings. Multiple design iterations using a co-design approach were beneficial to incrementally improve the course and consider multiple perspectives within the design process.

Practical implications

This paper develops a set of design principles to provide guidance to other practitioners who seek to improve their own courses.

Originality/value

The use of design-based research and mixed-method approaches that consider both student and teacher perspectives to examine the design of very large, foundational finance courses is novel.

Details

Journal of Work-Applied Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2205-2062

Keywords

Book part
Publication date: 1 August 2023

Tiffany Wright and Nancy Smith

LGBT educators have historically experienced various challenges in their schools, while school leaders have needed to balance the rights and needs of LGBT educators with sometimes…

Abstract

LGBT educators have historically experienced various challenges in their schools, while school leaders have needed to balance the rights and needs of LGBT educators with sometimes unwelcoming community norms. The three iterations of this study that spanned across a decade aimed to gain an understanding of the ongoing climate for LGBT educators so that administrators utilize best practices related to policy enactment, advocacy, and enforcement – and in this chapter, relating specifically to creating an LGBT-inclusive climate in schools. Overall, the school climate for many LGBT educators continues to vary. In some respects, it has not changed dramatically from 2007 to 2017. Many participants over the three studies easily described positive and negative consequences of being out. Additionally, LGBT educators working with younger students consistently feel most unsafe being out to students to any degree, and they are experiencing an intense dichotomy of more policy and administrative support with more vehement opposition to being out as teachers. While there are still places for principals and other administrators to demonstrate stronger support for LGBT educators, these results show that their level of support is moving in the right direction.

Article
Publication date: 28 April 2023

Suheil Khuri and Reem Assadi

The purpose of this paper is to find approximate solutions for a general class of fractional order boundary value problems that arise in engineering applications.

Abstract

Purpose

The purpose of this paper is to find approximate solutions for a general class of fractional order boundary value problems that arise in engineering applications.

Design/methodology/approach

A newly developed semi-analytical scheme will be applied to find approximate solutions for fractional order boundary value problems. The technique is regarded as an extension of the well-established variation iteration method, which was originally proposed for initial value problems, to cover a class of boundary value problems.

Findings

It has been demonstrated that the method yields approximations that are extremely accurate and have uniform distributions of error throughout their domain. The numerical examples confirm the method’s validity and relatively fast convergence.

Originality/value

The generalized variational iteration method that is presented in this study is a novel strategy that can handle fractional boundary value problem more effectively than the classical variational iteration method, which was designed for initial value problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 April 2022

Srinivasa Acharya, Ganesan Sivarajan, D. Vijaya Kumar and Subramanian Srikrishna

Currently, more renewable energy resources with advanced technology levels are incorporated in the electric power networks. Under this circumstance, the attainment of optimal…

77

Abstract

Purpose

Currently, more renewable energy resources with advanced technology levels are incorporated in the electric power networks. Under this circumstance, the attainment of optimal economic dispatch is very much essential by the power system as the system requires more power generation cost and also has a great demand for electrical energy. Therefore, one of the primary difficulties in the power system is lowering the cost of power generation, which includes both economic and environmental costs. This study/paper aims to introduce a meta-heuristic algorithm, which offers an solution to the combined economic and emission dispatch (CEED).

Design/methodology/approach

A novel algorithm termed Levy-based glowworm swarm optimization (LGSO) is proposed in this work, and it provides an excellent solution to the combined economic and emission dispatch (CEED) difficulties by specifying the generation of the optimal renewable energy systems (RES). Moreover, in hybrid renewable energy systems, the proposed scheme is extended by connecting the wind turbine because the thermal power plant could not control the aforementioned costs. In terms of economic cost, emission cost and transmission loss, the suggested CEED model outperforms other conventional schemes genetic algorithm, Grey wolf optimization, whale optimization algorithm (WOA), dragonfly algorithm (DA) and glowworm swarm optimization (GSO) and demonstrates its efficiency.

Findings

According to the results, the suggested model for Iteration 20 was outperformed GSO, DA and WOA by 23.46%, 97.33% and 93.33%, respectively. For Iteration 40, the proposed LGSO was 60%, 99.73% and 97.06% better than GSO, DA and WOA methods, respectively. The proposed model for Iteration 60 was 71.50% better than GSO, 96.56% better than DA and 95.25% better than WOA. As a result, the proposed LGSO was shown to be superior to other existing techniques with respect to the least cost and loss.

Originality/value

This research introduces the latest optimization algorithm known as LGSO to provide an excellent solution to the CEED difficulties by specifying the generation of the optimal RES. To the best of the authors’ knowledge, this is the first work that utilizes LGSO-based optimization for providing an excellent solution to the CEED difficulties by specifying the generation of the optimal RES.

Details

Kybernetes, vol. 52 no. 9
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 19 February 2024

Anne Stouby Persson and Line Revsbæk

This paper aims to answer report how mentors who onboard newcomers to a high-stress social work organization can learn about their onboarding practice by treating onboarding as a…

Abstract

Purpose

This paper aims to answer report how mentors who onboard newcomers to a high-stress social work organization can learn about their onboarding practice by treating onboarding as a wicked problem that escapes definitive formulation and final solutions.

Design/methodology/approach

The authors follow an action research approach with three iterations of learning about onboarding with mentors in a Danish social work organization struggling with an employee turnover exceeding 30%.

Findings

The authors unfold the authors’ emerging sensitivity to wickedity over the iterations of learning about onboarding with the mentors. As the authors foreground the wickedity of the authors onboarding in the last iteration, three lessons learned could be derived: it warrants the mentors’ continuous inquiry; opens inquiry into the ambivalence of mentoring; and convenes responsibility for inquiry to a community of mentors.

Research limitations/implications

This study of problematic onboarding to high-stress social work shows the value of fore-grounding wickedity instead of hiding it with a positive framing. This wickedity rests on situated grounding and is only transferrable to other organizations with the utmost caution.

Practical implications

High-stress social work organizations without the capacity to systematically sustain best practices for onboarding may, instead, increase attention to the wickedity of onboarding as a motivation for continuous inquiry by a broader community of mentors.

Originality/value

To the best of the authors’ knowledge, this paper is the first to present an action research study of problem wickedity to motivate mentors’ inquiry into onboarding newcomers to high-stress social work.

Details

Journal of Workplace Learning, vol. 36 no. 2
Type: Research Article
ISSN: 1366-5626

Keywords

Open Access
Article
Publication date: 11 December 2023

Jonan Phillip Donaldson, Ahreum Han, Shulong Yan, Seiyon Lee and Sean Kao

Design-based research (DBR) involves multiple iterations, and innovations are needed in analytical methods for understanding how learners experience a learning experience in ways…

Abstract

Purpose

Design-based research (DBR) involves multiple iterations, and innovations are needed in analytical methods for understanding how learners experience a learning experience in ways that both embrace the complexity of learning and allow for data-driven changes to the design of the learning experience between iterations. The purpose of this paper is to propose a method of crafting design moves in DBR using network analysis.

Design/methodology/approach

This paper introduces learning experience network analysis (LENA) to allow researchers to investigate the multiple interdependencies between aspects of learner experiences, and to craft design moves that leverage the relationships between struggles, what worked and experiences aligned with principles from theory.

Findings

The use of network analysis is a promising method of crafting data-driven design changes between iterations in DBR. The LENA process developed by the authors may serve as inspiration for other researchers to develop even more powerful methodological innovations.

Research limitations/implications

LENA may provide design-based researchers with a new approach to analyzing learner experiences and crafting data-driven design moves in a way that honors the complexity of learning.

Practical implications

LENA may provide novice design-based researchers with a structured and easy-to-use method of crafting design moves informed by patterns emergent in the data.

Originality/value

To the best of the authors’ knowledge, this paper is the first to propose a method for using network analysis of qualitative learning experience data for DBR.

Article
Publication date: 31 May 2023

Haizhou Yang, Seong Hyeon Hong, Yu Qian and Yi Wang

This paper aims to present a multi-fidelity surrogate-based optimization (MFSBO) method for computationally accurate and efficient design of microfluidic concentration gradient…

Abstract

Purpose

This paper aims to present a multi-fidelity surrogate-based optimization (MFSBO) method for computationally accurate and efficient design of microfluidic concentration gradient generators (µCGGs).

Design/methodology/approach

Cokriging-based multi-fidelity surrogate model (MFSM) is constructed to combine data with varying fidelities and computational costs to accelerate the optimization process and improve design accuracy. An adaptive sampling approach based on parallel infill of multiple low-fidelity (LF) samples without notably adding computation burden is developed. The proposed optimization framework is compared with a surrogate-based optimization (SBO) method that relies on data from a single source, and a conventional multi-fidelity adaptive sampling and optimization method in terms of the convergence rate and design accuracy.

Findings

The results demonstrate that proposed MFSBO method allows faster convergence and better designs than SBO for all case studies with 49% more reduction in the objective function value on average. It is also found that parallel infill (MFSBO-4) with four LF samples, enables more robust, efficient and accurate designs than conventional multi-fidelity infill (MFSBO-1) that only adopts one LF sample during each iteration for more complex optimization problems.

Originality/value

A MFSM based on cokriging method is constructed to utilize data with varying fidelities, accuracies and computational costs for µCGG design. A parallel infill strategy based on multiple infill criteria is developed to accelerate the convergence and improve the design accuracy of optimization. The proposed methodology is proved to be a feasible method for µCGG design and its computational efficiency is verified.

Details

Engineering Computations, vol. 40 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 27 March 2023

Xiao Xiao, Fabian Müller, Martin Marco Nell and Kay Hameyer

The goal of this research is to investigate the convergence behavior of the Newton iteration, when solving the nonlinear problem with consideration of hysteresis effects…

Abstract

Purpose

The goal of this research is to investigate the convergence behavior of the Newton iteration, when solving the nonlinear problem with consideration of hysteresis effects. Incorporating the vector hysteresis model in the magnetic vector potential formulation has encountered difficulties. One of the reasons is that the Newton method is very sensitive regarding the starting point and states distinct requirements for the nonlinear function in terms of monotony and smoothness. The other reason is that the differential reluctivity tensor of the material model is discontinuous due to the properties of the stop operators. In this work, line search methods to overcome these difficulties are discussed.

Design/methodology/approach

To stabilize the Newton iteration, line search methods are studied. The first method computes an error-oriented search direction. The second method is based on the Wolfe-Powell rule using the Armijo condition and curvature condition.

Findings

In this paper, the differentiation of the vector stop model, used to evaluate the Jacobian matrix, is studied. Different methods are applied for this nonlinear problem to ensure reliable and stable finite element simulations with consideration of vector hysteresis effects.

Originality/value

In this paper, two different line search Newton methods are applied to solve the magnetic field problems with consideration of vector hysteresis effects and ensure a stable convergence successfully. A comparison of these two methods in terms of robustness and efficiency is presented.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of over 2000