Search results

1 – 10 of over 1000
Article
Publication date: 1 December 2002

Anthony Wachs, Jean‐Robert Clermont and Ahmad Khalifeh

A finite volume method is applied to numerical simulations of steady isothermal and non‐isothermal flows of fluids obeying different constitutive equations: Newtonian, purely…

Abstract

A finite volume method is applied to numerical simulations of steady isothermal and non‐isothermal flows of fluids obeying different constitutive equations: Newtonian, purely viscous with shear‐thinning properties (Carreau law) and viscoelastic Upper Convected Maxwell differential model whose temperature dependence is described by a William‐Landel‐Ferry equation. The flow situations concern various abrupt axisymmetric contractions from 2:1 to 16:1. Such flow geometries are involved in polymer processing operations. The governing equations are discretized on a staggered grid with an upwind scheme for the convective‐type terms and are solved by a decoupled algorithm, stabilized by a pseudo‐transient stress term and an elastic viscous stress splitting technique. The numerical results highlight the influence of temperature on the flow situations, and also the complex behaviour of the materials under non‐isothermal conditions.

Details

Engineering Computations, vol. 19 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 1992

M.C. MELAAEN

A solution algorithm for the numerical calculation of isothermal fluid flow inside gas turbine combustors is presented. The finite‐volume method together with curvilinear…

Abstract

A solution algorithm for the numerical calculation of isothermal fluid flow inside gas turbine combustors is presented. The finite‐volume method together with curvilinear non‐orthogonal coordinates and a non‐staggered grid arrangement is employed. Cartesian velocity components are chosen as dependent variables in the momentum equations. The turbulent flow inside the combustor is modelled by the k—ε turbulence model. The grid is generated by solving elliptic equations. This solution algorithm, which can be used on both can‐type and annular combustors, is tested on a water model can‐type combustor because of the availability of geometrical and experimental data for comparison.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 September 2008

Emre Sozer and Wei Shyy

The purpose of this paper is to develop an empiricism free, first principle‐based model to simulate fluid flow and heat transfer through porous media.

Abstract

Purpose

The purpose of this paper is to develop an empiricism free, first principle‐based model to simulate fluid flow and heat transfer through porous media.

Design/methodology/approach

Conventional approaches to the problem are reviewed. A multi‐scale approach that makes use of the sample simulations at the individual pore levels is employed. The effect of porous structures on the global fluid flow is accounted for via local volume averaged governing equations, while the closure terms are accounted for via averaging flow characteristics around the pores.

Findings

The performance of the model has been tested for an isothermal flow case. Good agreement with experimental data were achieved. Both the permeability and Ergun coefficient are shown to be flow properties as opposed to the empirical approach which typically results in constant values of these parameters independent of the flow conditions. Hence, the present multi‐scale approach is more versatile and can account for the possible changes in flow characteristics.

Research limitations/implications

Further validation including non‐isothermal cases is necessary. Current scope of the model is limited to incompressible flows. The methodology can accommodate extension to compressible flows.

Originality/value

This paper proposes a method that eliminates the dependence of the numerical porous media simulations on empirical data. Although the model increases the fidelity of the simulations, it is still computationally affordable due to the use of a multi‐scale methodology.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 7/8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 August 2023

Zaheer Abbas, Sabeeh Khaliq, Sana Usman and Muhammad Yousuf Rafiq

The coating process is broadly employed in the manufacturing of wallpapers, adhesive tapes, wrapping, protection of fabrics and metals, X-ray and photographic films…

Abstract

Purpose

The coating process is broadly employed in the manufacturing of wallpapers, adhesive tapes, wrapping, protection of fabrics and metals, X-ray and photographic films, beautification, books and magazines, film foils, magnetic records, coated paper, etc.

Design/methodology/approach

In this study, an incompressible flow of non-Newtonian fluid is modeled to inspect the rheological behavior of finite coating thickness in the reverse roll coating process. With the assistance of lubrication approximation theory (LAT), the dimensionless form of governing expressions is simplified. Exact solutions for distributions for velocity, flow rate, temperature and pressure gradient attained utilizing perturbation technique and their variation is presented as well as discussed in graphs. Meanwhile, some important factors from an engineering perspective including coating thickness and transition point were calculated mathematically and are displayed in a tabular manner. Also, streamlines are drawn to observe the flow pattern.

Findings

Prandtl fluid parameters provide a controlling factor to regulate the flow rate, velocity, coating thickness, and pressure gradient leading to an efficient coating process. Moreover, the Brinkman number and Prandtl fluid parameters significantly improve the temperature distribution.

Originality/value

In the literature, this study fills a gap in the theoretical prediction of coating thickness rheologically influenced by Prandtl fluid in reverse roll coating process.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 January 2008

A. Arefmanesh and M.A. Alavi

This paper aims to develop a hybrid finite difference‐finite element method and apply it to solve the three‐dimensional energy equation in non‐isothermal fluid flow past over a…

Abstract

Purpose

This paper aims to develop a hybrid finite difference‐finite element method and apply it to solve the three‐dimensional energy equation in non‐isothermal fluid flow past over a tube.

Design/methodology/approach

To implement the hybrid scheme, the tube length is partitioned into uniform segments by choosing grid points along its length, and a plane perpendicular to the tube axis is drawn at each of the points. Subsequently, the Taylor‐Galerkin finite element technique is employed to discretize the energy equation in the planes; while the derivatives along the tube are discretized using the finite difference method.

Findings

To demonstrate the validity of the proposed numerical scheme, three‐dimensional test cases have been solved using the method. The variation of L2‐norm of the error with mesh refinement shows that the numerical solution converges to the exact solution with mesh refinement. Moreover, comparison of the computational time duration shows that the proposed method is approximately three times faster than the 3D finite element method. In the non‐isothermal fluid flow around a tube for Re=250 and Pr=0.7, the results show that the Nusselt number decreases with the increase in the tube length and, for the tube length greater than six times the tube diameter, the average Nusselt number converges to the value for the two‐dimensional case.

Originality/value

A hybrid finite difference‐finite element method has been developed and applied to solve the 3D transient energy equation for different test cases. The proposed method is faster, and computationally more efficient, compared with the 3D finite element method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 18 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 March 2009

Maged A.I. El‐Shaarawia and Ali A. Al‐Ugla

The paper seeks to focus on obtaining the transient torque required to rotate the inner cylinder in open ended vertical concentric annuli for a fluid of Pr = 0.7 in the laminar…

Abstract

Purpose

The paper seeks to focus on obtaining the transient torque required to rotate the inner cylinder in open ended vertical concentric annuli for a fluid of Pr = 0.7 in the laminar natural convection flow regime over a wide range of the controlling parameter Gr2/Ta. The inner wall is heated and subjected to an impulsive rotation while the outer one is stationary and maintained adiabatic.

Design/methodology/approach

The governing transient boundary‐layer equations are numerically solved using an iterative linearized finite‐difference scheme.

Findings

The transient induced flow rate and absorbed heat for different annulus heights are presented. High rotational speed (i.e. low values of Gr2/Ta) increases the flow rate and heat absorbed in short annuli. However, for considerably tall annuli, Gr2/Ta has slight effect on the flow and heat absorbed. The steady‐state time is tangibly influenced by Gr2/Ta in considerably short annuli and very slightly affected for considerably tall annuli.

Practical implications

The investigated problem can simulate the start‐up period of naturally cooled small vertical electric motors.

Originality/value

The paper presents results not available in the literature for the effect of Gr2/Ta on the developing velocities, pressure, flow‐rate induced, absorbed heat by fluid and required torque in vertical concentric annuli with impulsively rotated inner walls under the transient free‐convection heat transfer mode.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2011

V.P. Vallala, J.N. Reddy and K.S. Surana

Most studies of power‐law fluids are carried out using stress‐based system of Navier‐Stokes equations; and least‐squares finite element models for vorticity‐based equations of…

Abstract

Purpose

Most studies of power‐law fluids are carried out using stress‐based system of Navier‐Stokes equations; and least‐squares finite element models for vorticity‐based equations of power‐law fluids have not been explored yet. Also, there has been no study of the weak‐form Galerkin formulation using the reduced integration penalty method (RIP) for power‐law fluids. Based on these observations, the purpose of this paper is to fulfill the two‐fold objective of formulating the least‐squares finite element model for power‐law fluids, and the weak‐form RIP Galerkin model of power‐law fluids, and compare it with the least‐squares finite element model.

Design/methodology/approach

For least‐squares finite element model, the original governing partial differential equations are transformed into an equivalent first‐order system by introducing additional independent variables, and then formulating the least‐squares model based on the lower‐order system. For RIP Galerkin model, the penalty function method is used to reformulate the original problem as a variational problem subjected to a constraint that is satisfied in a least‐squares (i.e. approximate) sense. The advantage of the constrained problem is that the pressure variable does not appear in the formulation.

Findings

The non‐Newtonian fluids require higher‐order polynomial approximation functions and higher‐order Gaussian quadrature compared to Newtonian fluids. There is some tangible effect of linearization before and after minimization on the accuracy of the solution, which is more pronounced for lower power‐law indices compared to higher power‐law indices. The case of linearization before minimization converges at a faster rate compared to the case of linearization after minimization. There is slight locking that causes the matrices to be ill‐conditioned especially for lower values of power‐law indices. Also, the results obtained with RIP penalty model are equally good at higher values of penalty parameters.

Originality/value

Vorticity‐based least‐squares finite element models are developed for power‐law fluids and effects of linearizations are explored. Also, the weak‐form RIP Galerkin model is developed.

Article
Publication date: 8 October 2018

Purushothaman Pichandi and Satheesh Anbalagan

The purpose of this paper is to propose an effective numerical approach for solving the natural convection in a two-dimensional square enclosure by using the single relaxation…

Abstract

Purpose

The purpose of this paper is to propose an effective numerical approach for solving the natural convection in a two-dimensional square enclosure by using the single relaxation time-Bhatnagar, Gross and Krook (SRT-BGK) model (D2Q9) and lattice Boltzmann method (LBM).

Design/methodology/approach

Navier–Stroke equation is replaced by lattice Boltzmann method, and the numerical approach was simulated using LBM. LBM is a linear equation so, it reduces the computational time. The governing equations are solved using the SRT-BGK model. To achieve better numerical stability and accuracy, the momentum and energy equations are solved using two-dimensional nine-directional (D2Q9) lattice arrangement.

Findings

The results are presented at different convection mechanism with constant Prandtl number = 0.71, and the result is validated with reported literature. Numerical investigation is performed and accurate results are obtained; the range of Pr = 0.71, various Rayleigh number, phase change, periodicity parameter and amplitude ratio with three different blockage ratios. The present study is performed using LBM.

Research limitations/implications

To extend this work, the influence of natural convection, various selections of Prandtl number and Rayleigh number, periodicity and the effect of aspect ratio with mounted number of blockages could be included.

Practical implications

This research article will be useful for the study of fluid flow and heat transfer in hot and cold fluid interaction over the solid object. Like gear hardening with various sizes of gear blocks, material processing with hot and cold fluid interactions inside the furnace wall, solar panels high and low density fluid variation, indoor hot and cold fluid thermal environments, inside nuclear reactors heat and heavy water fluid interaction, cooling of electronic equipments and various chemical engineering applications.

Social implications

This paper will be useful for studying fluid flow and heat transfer within a square enclosure, and it gives practical information in engineering and heat transfer applications.

Originality/value

The present work is the first to investigate using LBM for selected parameters to apply a natural convection with imposed sinusoidal wave for different convection mechanisms.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 October 2018

Safa Sabet, Moghtada Mobedi, Murat Barisik and Akira Nakayama

Fluid flow and heat transfer in a dual scale porous media is investigated to determine the interfacial convective heat transfer coefficient, numerically. The studied porous media…

Abstract

Purpose

Fluid flow and heat transfer in a dual scale porous media is investigated to determine the interfacial convective heat transfer coefficient, numerically. The studied porous media is a periodic dual scale porous media. It consists of the square rods which are permeable in an aligned arrangement. It is aimed to observe the enhancement of heat transfer through the porous media, which is important for thermal designers, by inserting intra-pores into the square rods. A special attention is given to the roles of size and number of intra-pores on the heat transfer enhancement through the dual scale porous media. The role of intra-pores on the pressure drop of air flow through porous media is also investigated by calculation and comparison of the friction coefficient.

Design/methodology/approach

To calculate the interfacial convective heat transfer coefficient, the governing equations which are continuity, momentum and energy equations are solved to determine velocity, pressure and temperature fields. As the dual scale porous structure is periodic, a representative elementary volume is generated, and the governing equations are numerically solved for the selected representative volume. By using the obtained velocity, pressure and temperature fields and using volume average definition, the volume average of aforementioned parameters is calculated and upscaled. Then, the interfacial convective heat transfer coefficient and the friction coefficient is numerically determined. The interparticle porosity is changed between 0.4 and 0.75, while the intraparticle varies between 0.2 and 0.75 to explore the effect of intra-pore on heat transfer enhancement.

Findings

The obtained Nusselt number values are compared with corresponding mono-scale porous media, and it is found that heat transfer through a porous medium can be enhanced threefold (without the increase of pressure drop) by inserting intraparticle pores in flow direction. For the porous media with low values of interparticle porosity (i.e. = 0.4), an optimum intraparticle porosity exists for which the highest heat transfer enhancement can be achieved. This value was found around 0.3 when the interparticle porosity was 0.4.

Research limitations/implications

The results of the study are interesting, especially from heat transfer enhancement point of view. However, further studies are required. For instance, studies should be performed to analyze the rate of the heat transfer enhancement for different shapes and arrangements of particles and a wider range of porosity. The other important parameter influencing heat transfer enhancement is the direction of pores. In the present study, the intraparticle pores are in flow direction; hence, the enhancement rate of heat transfer for different directions of pores must also be investigated.

Practical implications

The application of dual scale porous media is widely faced in daily life, nature and industry. The flowing of a fluid through a fiber mat, woven fiber bundles, multifilament textile fibers, oil filters and fractured porous media are some examples for the application of the heat and fluid flow through a dual scale porous media. Heat transfer enhancement.

Social implications

The enhancement of heat transfer is a significant topic that gained the attention of researchers in recent years. The importance of topic increases day-by-day because of further demands for downsizing of thermal equipment and heat recovery devices. The aim of thermal designers is to enhance heat transfer rate in thermal devices and to reduce their volume (and/or weight in some applications) by using lower mechanical power for cooling.

Originality/value

The present study might be the first study on determination of thermal transport properties of dual scale porous media yielded interesting results such as considerable enhancement of heat transfer by using proper intraparticle channels in a porous medium.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 September 2003

Marc S. Ingber

Vorticity formulations for the incompressible Navier‐Stokes equations have certain advantages over primitive‐variable formulations including the fact that the number of equations…

Abstract

Vorticity formulations for the incompressible Navier‐Stokes equations have certain advantages over primitive‐variable formulations including the fact that the number of equations to be solved is reduced through the elimination of the pressure variable, identical satisfaction of the incompressibility constraint and the continuity equation, and an implicitly higher‐order approximation of the velocity components. For the most part, vorticity methods have been used to solve exterior isothermal problems. In this research, a vorticity formulation is used to study the natural convection flows in differentially‐heated enclosures. The numerical algorithm is divided into three steps: two kinematic steps and one kinetic step. The kinematics are governed by the generalized Helmholtz decomposition (GHD) which is solved using a boundary element method (BEM) whereas the kinetics are governed by the vorticity equation which is solved using a finite element method (FEM). In the first kinematic step, vortex sheet strengths are determined from a novel Galerkin implementation of the GHD. These vortex sheet strengths are used to determine Neumann boundary conditions for the vorticity equation. (The thermal boundary conditions are already known.) In the second kinematic step, the interior velocity field is determined using the regular (non‐Galerkin) form of the GHD. This step, in a sense, linearizes the convective acceleration terms in both the vorticity and energy equations. In the third kinetic step, the coupled vorticity and energy equations are solved using a Galerkin FEM to determine the updated values of the vorticity and thermal fields. Two benchmark problems are considered to show the robustness and versatility of this formulation including natural convection in an 8×1 differentially‐heated enclosure at a near critical Rayleigh number.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000