Search results

1 – 2 of 2
Article
Publication date: 20 October 2023

Omar Imad Shukri Windi and Ali Sadik Gafer Qanber

The purpose of this study is to extract the response of the simultaneous low-velocity impact of multiple impactors on a porous functionally graded (FG) aluminum plate.

Abstract

Purpose

The purpose of this study is to extract the response of the simultaneous low-velocity impact of multiple impactors on a porous functionally graded (FG) aluminum plate.

Design/methodology/approach

To design a porous FG structure, a series of functions are applied using the porosity coefficient, and mechanical properties including Young’s modulus, shear modulus and the density of the porous structure are presented as a function of the axis placed in the direction of the plate thickness. The first-order shear deformation theory of the plate is used. To simulate the contact process between each impactor and the plate, a nonlinear Hertz contact force is considered for that impactor independently.

Findings

ABAQUS finite element software is used for the verification process of the theorical equations. The effects of porous function type, radius and initial velocity of impactor are investigated for the simultaneous impact of five impactors on porous FG aluminum plate with a simply supported boundary condition. Histories of contact force and displacement of the impactor placed in the center of the beam are analyzed in detail with the changes of the mentioned parameters.

Originality/value

Due to the advantages of porous aluminum plate such as high energy absorption and low weight, such structures may be subjected to the simultaneous impact of multiple impactors, which is studied in this research.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 March 2024

Douglas Ramalho Queiroz Pacheco

This study aims to propose and numerically assess different ways of discretising a very weak formulation of the Poisson problem.

Abstract

Purpose

This study aims to propose and numerically assess different ways of discretising a very weak formulation of the Poisson problem.

Design/methodology/approach

We use integration by parts twice to shift smoothness requirements to the test functions, thereby allowing low-regularity data and solutions.

Findings

Various conforming discretisations are presented and tested, with numerical results indicating good accuracy and stability in different types of problems.

Originality/value

This is one of the first articles to propose and test concrete discretisations for very weak variational formulations in primal form. The numerical results, which include a problem based on real MRI data, indicate the potential of very weak finite element methods for tackling problems with low regularity.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 2 of 2