Search results

1 – 10 of 330
Article
Publication date: 5 March 2018

Jianping Huang, Wenyuan Liao and Zhenchun Li

The purpose of this paper is to develop a new finite difference method for solving the seismic wave propagation in fluid-solid media, which can be described by the acoustic and…

Abstract

Purpose

The purpose of this paper is to develop a new finite difference method for solving the seismic wave propagation in fluid-solid media, which can be described by the acoustic and viscoelastic wave equations for the fluid and solid parts, respectively.

Design/methodology/approach

In this paper, the authors introduced a coordinate transformation method for seismic wave simulation method. In the new method, the irregular fluidsolid interface is transformed into a horizontal interface. Then, a multi-block coordinate transformation method is proposed to mesh every layer to curved grids and transforms every interface to horizontal interface. Meanwhile, a variable grid size is used in different regions according to the shape and the velocity within each region. Finally, a Lebedev-standard staggered coupled grid scheme for curved grids is applied in the multi-block coordinate transformation method to reduce the computational cost.

Findings

The instability in the auxiliary coordinate system caused by the standard staggered grid scheme is resolved using a curved grid viscoelastic wave field separation strategy. Several numerical examples are solved using this new method. It has been shown that the new method is stable, efficient and highly accurate in solving the seismic wave equation defined on domain with irregular fluidsolid interface.

Originality/value

First, the irregular fluidsolid interface is transformed into a horizontal interface by using the coordinate transformation method. The conversion between pressures and stresses is easy to implement and adaptive to different irregular fluidsolid interface models, because the normal stress and shear stress vanish when the normal angle is 90° in the interface. Moreover, in the new method, the strong false artificial boundary reflection and instability caused by ladder-shaped grid discretion are resolved as well.

Article
Publication date: 20 December 2018

Shalini Saha, Amares Chattopadhyay and Abhishek Kumar Singh

The purpose of this paper is to develop a numerical (finite-difference) model exploring phase and group velocities of SH-wave propagation in initially stressed transversely…

Abstract

Purpose

The purpose of this paper is to develop a numerical (finite-difference) model exploring phase and group velocities of SH-wave propagation in initially stressed transversely isotropic poroelastic multi-layered composite structures and initially stressed viscoelastic-dry-sandy multi-layered composite structures in two distinct cases.

Design/methodology/approach

With the aid of relevant constitutive relations, the non-vanishing equations of motions for the propagation SH-wave in the considered composite structures have been derived. Haskell matrix method and finite-difference scheme are adopted to deduce velocity equation for both the cases. Stability analysis for the adopted finite-difference scheme has been carried out and the expressions for phase as well as group velocity in terms of dispersion-parameter and stability-ratio have been deduced.

Findings

Velocity equations are derived for the propagation of SH-wave in both the composite structures. The obtained results are matched with the classical results for the case of double and triple-layered composite structure along with comparative analysis. Stability analysis have been carried out to develop expressions of phase as well as group velocity in terms of dispersion-parameter and stability-ratio. The effect of wavenumber, dispersion parameter along with initial-stress, porosity, sandiness, viscoelasticity, stability ratio, associated with the said composite structures on phase, damped and group velocities of SH-wave has been unveiled.

Originality/value

To the best of authors’ knowledge, numerical modelling and analysis of propagation characteristics of SH-wave in multi-layered initially stressed composite structures composed of transversely isotropic poroelastic materials and viscoelastic-dry-sandy materials remain unattempted inspite of its importance and relevance in many branches of science and engineering.

Details

Engineering Computations, vol. 36 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 February 1999

Xiaoli Zhang and T. Hung Nguyen

The solidification of a superheated fluid‐porous medium contained in a rectangular cavity is studied numerically. The bottom and side walls of the cavity are insulated while the…

Abstract

The solidification of a superheated fluid‐porous medium contained in a rectangular cavity is studied numerically. The bottom and side walls of the cavity are insulated while the top wall is maintained at a constant temperature below the freezing point of the saturating fluid. The study is focused on the effects of superheat on the development of natural convection and heat transfer during the solidification process. For a fluid initially at a temperature above the freezing point, the results obtained by neglecting convection overpredicts the solidification time by about 12 percent for a Rayleigh number of 800. When convection is taken into account, it is found that the solidification process consists of three distinct regimes: the conduction regime, convection regime and the solidification of the remaining fluid that can be described by the Neumann solution for the solidification of a fluid at its freezing point. The numerical simulations are based on the Darcy‐Boussinesq equations, using the front tracking method in a transformed coordinate system. The entire solidification process is described in terms of the evolutions of the streamlines and isotherm patterns, the maximum and average temperatures of the fluid, the interface position, and the heat transfer rate. The parametric domain covered by these simulations is 0 ≤ Ra ≤ 800, 0 ≤ Stl ≤ 0.67, Sts = 0.3 and XL = 1 where Ra is the Rayleigh number, Stl the liquid Stefan number, Sts the solid Stefan number, and XL the aspect ratio of the cavity.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 9 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 September 2021

Shishir Gupta, Soumik Das and Rachaita Dutta

The purpose of the present study is to investigate the dispersion and damping behaviors of Love-type waves propagating in an irregular fluid-saturated fissured porous stratum…

Abstract

Purpose

The purpose of the present study is to investigate the dispersion and damping behaviors of Love-type waves propagating in an irregular fluid-saturated fissured porous stratum coated by a sandy layer.

Design/methodology/approach

Two cases are analyzed in this study. In case-I, the irregular fissured porous stratum is covered by a dry sandy layer, whereas in case-II, the sandy layer is considered to be viscous in nature. The method of separation of variables is incorporated in this study to acquire the displacement components of the considered media.

Findings

With the help of the suitable boundary conditions, the complex frequency relation is established in each case leading to two distinct equations. The real and imaginary parts of the complex frequency relation define the dispersion and attenuation properties of Love-type waves, respectively. Using the MATHEMATICA software, several graphical implementations are executed to illustrate the influence of the sandiness parameter, total porosity, volume fraction of fissures, fluctuation parameter, flatness parameters and ratio of widths of layers on the phase velocity and attenuation coefficient. Furthermore, comparison between the two cases is clearly framed through the variation of aforementioned parameters. Some particular cases in the presence and absence of irregular interfaces are also analyzed.

Originality/value

To the best of the authors' knowledge, although many articles regarding the surface wave propagation in different crustal layers have been published, the propagation of Love-type waves in a sandwiched fissured porous stratum with irregular boundaries is still undiscovered. Results accomplished in this analytical study can be employed in different practical areas, such as earthquake engineering, material science, carbon sequestration and seismology.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 March 2024

Fei Xu, Zheng Wang, Wei Hu, Caihao Yang, Xiaolong Li, Yaning Zhang, Bingxi Li and Gongnan Xie

The purpose of this paper is to develop a coupled lattice Boltzmann model for the simulation of the freezing process in unsaturated porous media.

Abstract

Purpose

The purpose of this paper is to develop a coupled lattice Boltzmann model for the simulation of the freezing process in unsaturated porous media.

Design/methodology/approach

In the developed model, the porous structure with complexity and disorder was generated by using a stochastic growth method, and then the Shan-Chen multiphase model and enthalpy-based phase change model were coupled by introducing a freezing interface force to describe the variation of phase interface. The pore size of porous media in freezing process was considered as an influential factor to phase transition temperature, and the variation of the interfacial force formed with phase change on the interface was described.

Findings

The larger porosity (0.2 and 0.8) will enlarge the unfrozen area from 42 mm to 70 mm, and the rest space of porous medium was occupied by the solid particles. The larger specific surface area (0.168 and 0.315) has a more fluctuated volume fraction distribution.

Originality/value

The concept of interfacial force was first introduced in the solid–liquid phase transition to describe the freezing process of frozen soil, enabling the formulation of a distribution equation based on enthalpy to depict the changes in the water film. The increased interfacial force serves to diminish ice formation and effectively absorb air during the freezing process. A greater surface area enhances the ability to counteract liquid migration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 January 2006

Y. Zhang

To review, analyze and present the effects of the contact‐fluid interfacial shear strength and contact‐fluid interfacial slippage and the critical importance of these effects in…

2043

Abstract

Purpose

To review, analyze and present the effects of the contact‐fluid interfacial shear strength and contact‐fluid interfacial slippage and the critical importance of these effects in elastohydrodynamic lubrication (EHL).

Design/methodology/approach

The experimental and theoretical research results of the contact‐fluid interfacial shear strength and its caused contact‐fluid interfacial slippage in hydrodynamic lubrication and especially in EHL obtained in the past decades and progressed in recent years by the present author and by others are reviewed. Analysis and presentation are made on both the contact‐fluid interfacial shear strength versus fluid pressure curve for a given bulk fluid temperature in an isothermal EHL and the influence of the bulk fluid temperature on this curve.

Findings

It is very clearly and well understood from the present paper that the value of the contact‐fluid interfacial shear strength in the inlet zone in an EHL contact, i.e. at low EHL fluid film pressures is usually low and usually has rather a weak dependence on the EHL fluid film pressure. This proves the correctness of the EHL theories previously developed by the author based on the assumption of this low value and dependence on the EHL fluid film pressure of the contact‐fluid interfacial shear strength. It is also very clearly understood that the bulk fluid temperature usually has a strong influence on the value of the contact‐fluid interfacial shear strength in EHL and the increase of this temperature usually significantly reduces the value of the contact‐fluid interfacial shear strength in EHL.

Practical implications

A very useful material for the engineers who are engaged in the design of EHL on gears, cams and roller bearings, and for the tribology scientists who thrust efforts in studying EHL and mixed EHL both by theoretical modeling and by experiments.

Originality/value

A new and generalized mode of mixed EHL is originally proposed by incorporating the finding of a more realistic mode of the contact regimes in a practical mixed EHL based on the contact‐fluid interfacial shear strength and contact‐fluid interfacial slippage effects. This mode of mixed EHL should become the direction of the theoretical research of mixed EHL in the future.

Details

Industrial Lubrication and Tribology, vol. 58 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 February 2018

Gino Cortellessa, Fausto Arpino, Simona Di Fraia and Mauro Scungio

In this work, a new two-phase version of the finite element-based Artificial Compressibility (AC) Characteristic-Based Split (CBS) algorithm is developed and applied for the first…

Abstract

Purpose

In this work, a new two-phase version of the finite element-based Artificial Compressibility (AC) Characteristic-Based Split (CBS) algorithm is developed and applied for the first time to heat and mass transfer phenomena in porous media with associated phase change. The purpose of this study is to provide an alternative for the theoretical analysis and numerical simulation of multiphase transport phenomena in porous media. Traditionally, the more complex Separate Flow Model was used in which the vapour and liquid phases were considered as distinct fluids and mathematically described by the conservation laws for each phase separately, resulting in a large number of governing equations.

Design/methodology/approach

Even though the adopted mathematical model presents analogies with the conventional multicomponent mixture flow model, it is characterized by a considerable reduction in the number of the differential equations for the primary variables. The fixed-grid numerical formulation can be applied to the resolution of general problems that may simultaneously include a superheated vapour region, a two-phase zone and a sub-cooled liquid region in a single physical domain with irregular and moving phase interfaces in between. The local thermal non-equilibrium model is introduced to consider the heat exchange between fluid and solid within the porous matrix.

Findings

The numerical model is verified considering the transport phenomena in a homogenous and isotropic porous medium in which water is injected from one side and heated from the other side, where it leaves the computational domain in a superheated vapour state. Dominant forces are represented by capillary interactions and two-phase heat conduction. The obtained results have been compared with the numerical data available in the scientific literature.

Social implications

The present algorithm provides a powerful routine tool for the numerical modelling of complex two-phase transport processes in porous media.

Originality/value

For the first time, the stabilized AC-CBS scheme is applied to the resolution of compressible viscous flow transport in porous materials with associated phase change. A properly stabilized matrix inversion-free procedure employs an adaptive local time step that allows acceleration of the solution process even in the presence of large source terms and low diffusion coefficients values (near the phase change point).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 October 2014

Tarik Kousksou, Mustapha Mahdaoui, Arid Ahmed and Jean Batina

– The purpose of this paper is to conduct a numerical study to analyze the melting process along a vertical wavy surface with uniform surface temperature.

Abstract

Purpose

The purpose of this paper is to conduct a numerical study to analyze the melting process along a vertical wavy surface with uniform surface temperature.

Design/methodology/approach

The cavity horizontal walls are insulated while the left hot wavy wall and the right cold wall are maintained at temperatures, TH=38.3°C and TC=28.3°C, respectively. The enclosure was filled by solid Gallium initially at temperature TC. A numerical code is developed using an unstructured finite-volume method and an enthalpy porosity technique to solve for natural convection coupled to solid-liquid phase change. The validity of the numerical code used is ascertained by comparing the results with previously published results.

Findings

The effect of number of wavy surface undulation and amplitude of the wavy surface on the flow structure and heat transfer characteristics is investigated in detail. The numerical results show that the enhanced total heat transfer rate seems to depend on the amplitude of the wavy surface.

Originality/value

Flow and heat transfer from irregular surfaces are often encountered in many engineering applications to enhance heat transfer such as micro-electronic devices, flat plate solar collectors and flat-plate condensers in refrigerators, etc. Roughened surfaces could be used in latent storage systems where the wall heat flux is known. One of the reasons why a roughened surface is more efficient in heat transfer is its capability to promote fluid motion near the surface; in this way a complex wavy surface is expected to promote a larger heat transfer rate than a flat plate. This complex geometry will promote a correspondingly complicated motion in the fluid near the surface; this motion is described by the nonlinear boundary-layer equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 May 1993

YONGKE WU and MARCEL LACROIX

A numerical study is reported of natural convection melting of ice within a vertical cylinder. A stream function‐vorticity‐temperature formulation is employed in conjunction with…

Abstract

A numerical study is reported of natural convection melting of ice within a vertical cylinder. A stream function‐vorticity‐temperature formulation is employed in conjunction with body‐fitted coordinates for tracking the irregular shape of the timewise varying solid‐liquid interface. A parabolic density profile versus temperature is assumed for water. Numerical experiments are carried out for a temperature of the cylinder wall ranging from 4°C to 10°C. Results show that natural convection heat transfer involving density anomaly leads to complex flow patterns and strongly affects the time evolution of the phase front. The maximum Nusselt number at the heated cylinder wall is obtained for Tw = 4°C while the minimum is observed for Tw = 8°C.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 3 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 December 2023

Priyadharsini Sivaraj and Sivaraj Chinnasamy

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both…

Abstract

Purpose

This paper aims to examine the thermal transmission and entropy generation of hybrid nanofluid filled containers with solid body inside. The solid body is seen as being both isothermal and capable of producing heat. A time-dependent non-linear partial differential equation is used to represent the transfer of heat through a solid body. The current study’s objective is to investigate the key properties of nanoparticles, external forces and particular attention paid to the impact of hybrid nanoparticles on entropy formation. This investigation is useful for researchers studying in the area of cavity flows to know features of the flow structures and nature of hybrid nanofluid characteristics. In addition, a detailed entropy generation analysis has been performed to highlight possible regimes with minimal entropy generation rates. Hybrid nanofluid has been proven to have useful qualities, making it an attractive coolant for an electrical device. The findings would help scientists and engineers better understand how to analyse convective heat transmission and how to forecast better heat transfer rates in cutting-edge technological systems used in industries such as heat transportation, power generation, chemical production and passive cooling systems for electronic devices.

Design/methodology/approach

Thermal transmission and entropy generation of hybrid nanofluid are analysed within the enclosure. The domain of interest is a square chamber of size L, including a square solid block. The solid body is considered to be isothermal and generating heat. The flow driven by temperature gradient in the cavity is two-dimensional. The governing equations, formulated in dimensionless primitive variables with corresponding initial and boundary conditions, are worked out by using the finite volume technique with the SIMPLE algorithm on a uniformly staggered mesh. QUICK and central difference schemes were used to handle convective and diffusive elements. In-house code is developed using FORTRAN programming to visualize the isotherms, streamlines, heatlines and entropy contours, which are handled by Tecplot software. The influence of nanoparticles volume fraction, heat generation factor, external magnetic forces and an irreversibility ratio on energy transport and flow patterns is examined.

Findings

The results show that the hybrid nanoparticles concentration augments the thermal transmission and the entropy production increases also while the augmentation of temperature difference results in a diminution of entropy production. Finally, magnetic force has the significant impact on heat transfer, isotherms, streamlines and entropy. It has been observed that the external magnetic force plays a good role in thermal regulations.

Research limitations/implications

Hybrid nanofluid is a desirable coolant for an electrical device. Various nanoparticles and their combinations can be analysed. Ferro-copper hybrid nanofluid considered with the help of prevailing literature review. The research would benefit scientists and engineers by improving their comprehension of how to analyses convective heat transmission and forecast more accurate heat transfer rates in various fields.

Practical implications

Due to its helpful characteristics, ferrous-copper hybrid nanofluid is a desirable coolant for an electrical device. The research would benefit scientists and engineers by improving their comprehension of how to analyse convective heat transmission and forecast more accurate heat transfer rates in cutting-edge technological systems used in sectors like thermal transportation, cooling systems for electronic devices, etc.

Social implications

Entropy generation is used for an evaluation of the system’s performance, which is an indicator of optimal design. Hence, in recent times, it does a good engineering sense to draw attention to irreversibility under magnetic force, and it has an indispensable impact on investigation of electronic devices.

Originality/value

An efficient numerical technique has been developed to solve this problem. The originality of this work is to analyse convective energy transport and entropy generation in a chamber with internal block, which is capable of maintaining heat and producing heat. Effects of irreversibility ratio are scrutinized for the first time. Analysis of convective heat transfer and entropy production in an enclosure with internal isothermal/heat generating blocks gives the way to predict enhanced heat transfer rate and avoid the failure of advanced technical systems in industrial sectors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 330