Search results

1 – 10 of 186
Article
Publication date: 11 October 2018

Reena Sachan and Ajay Kumar Singh

The purpose of this study is to investigate microbial influenced corrosion of steel because of iron oxidizing bacteria (IOB).

Abstract

Purpose

The purpose of this study is to investigate microbial influenced corrosion of steel because of iron oxidizing bacteria (IOB).

Design/methodology/approach

Carbon steel was selected for this study. Winogradsky media was used for isolation of IOB and as test solution for corrosion measurements. Electrochemical tests and immersion test were conducted to estimate the corrosion rate and extent of pitting. The corroded surface was analysed by SEM and corrosion products formed over the metal surface were identified by XRD and Fourier transformed infrared. Biofilm formed over the corroded metal was analysed by UV-visible spectroscopy for its extracellular polymeric substances (EPS) constituents.

Findings

Presence of IOB in Winogradsky medium enhances corrosion. Uniform and localized corrosion increases with increased bacterial concentration and EPS constituents of the biofilm. Iron sulphite formation as one of the corrosion products has been suggested to be responsible for increased corrosion attack in the inoculated media in comparison to control media where corrosion product observed is iron hydrogen phosphate which is protective in nature.

Originality/value

This work correlates increased corrosion of steel in the presence of bacteria with the nature of corrosion products formed over it in case of IOB. Formation of corrosion products is governed by various electrochemical reactions; hence, inhibition of such reactions may lead to reduce or stop the formation of such products which enhances corrosion and thereby may reduce the extent of microbial induced corrosion.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 August 1966

J. McDougall

A review of the very widespread literature on the subject of bacterial corrosion, which is of practical concern to industry. The basis of the paper won first prize in the…

Abstract

A review of the very widespread literature on the subject of bacterial corrosion, which is of practical concern to industry. The basis of the paper won first prize in the international corrosion essay competition of the Society of Chemical Industry.

Details

Anti-Corrosion Methods and Materials, vol. 13 no. 8
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 7 November 2016

R.P. George, U. Kamachi Mudali and Baldev Raj

The purpose of this paper is to study the metal-Microbe interaction playing a crucial role in microbiologically influenced corrosion (MIC) and biofouling of materials in cooling…

Abstract

Purpose

The purpose of this paper is to study the metal-Microbe interaction playing a crucial role in microbiologically influenced corrosion (MIC) and biofouling of materials in cooling water systems. Treatment regimens should be planned based on this understanding.

Design/methodology/approach

Attempts were made in the past decades to characterize and understand biofilm formation on important power plant structural materials such as carbon steel (CS), stainless steel (SS) and titanium in fresh water and in seawater to achieve better control of biofouling and minimize MIC problems.

Findings

This report presents the results of detailed studies on tuberculation-formed CS because of the action of iron-oxidizing bacteria and the effects of algae- and bacteria-dominated biofilms on the passivity of SS. The preferential adhesion of different bacterial species on SS under the influence of inclusions and sensitization was studied in the context of preferential corrosion of SS weldments due to microbial action. Detailed characterization of biofilms formed on titanium (the likely condenser material for fast breeder reactors) after exposure for two years in Kalpakkam coastal waters revealed intense biofouling and biomineralization of manganese even in chlorinated seawater. Studies on the effectiveness of conventional fouling control strategies were also evaluated.

Originality/value

The detailed studies of different metal/biofilm/microbe interactions demonstrated the physiological diversity of microbes in the biofilms that were formed on different materials, coupling their cooperative metabolic activities with consequent corrosion behaviour. These interactions could enhance either anodic or cathodic reactions and exploit metallurgical features that enhance biofilm formation and/or the capacity of microbes to mutate and overcome mitigation measures.

Details

Anti-Corrosion Methods and Materials, vol. 63 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 November 2017

Arezoo Pedramfar, Keivan Beheshti Maal and Sayed Hossein Mirdamadian

Corrosion-producing microorganisms have different physiology and include sulfate-reducing bacteria, iron oxidizers and magnesium oxidizers. Biocorrosion has been seen in various…

Abstract

Purpose

Corrosion-producing microorganisms have different physiology and include sulfate-reducing bacteria, iron oxidizers and magnesium oxidizers. Biocorrosion has been seen in various industries, especially the petrochemicals and oil industries. One proposal to solve this problem is the use of bacteriophages to treat the bacteria-caused corrosion. The aims of this study were isolation and identification of corrosion-producing bacteria from petroleum pipeline corrosion as well as finding their specific bacteriophages for phage therapy purposes.

Design/methodology/approach

The sample pipes with the corrosion were obtained from the Gandomkar petroleum pipeline station, Chaharmahal and Bakhtiari, Iran. For screening the corrosion-producing bacteria, the rusted pipe samples were cultured in a selective culture medium, manganese agar. The purified individual colonies were subjected to molecular examinations. For isolating bacteriophages from silversmithing workshops wastewater in Isfahan, whole plate titration methods and transmission electron microscopy were used to isolate and detect phages.

Findings

The cultivation of corrosion-based material on manganese agar after 18 hours incubation at 30°C resulted in the isolation of cream-colored colonies. The microscopic examinations showed Gram-negative coccobacilli. Based on molecular examinations, the isolated bacteria were identified as Stenotrophomonas maltophilia strain PBM-IAUF-2 with Genebank accession number of KU145278.1. The found bacteriophage was related to the Siphoviridae family of phages.

Originality/value

This paper is the first report of isolation and identification of corrosion-producing bacteria and its specific lytic phages from Gandomkar petroleum pipeline station, Chaharmahal and Bakhtiari, Iran. The biological procedures for preventing the microbial corrosion could be an asset and considered as a potential in the petroleum and industrial microbiology. Phage therapy is considered as one of the economical methods for reducing the biocorrosion.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 June 1999

Reza Javaherdashti

Microbiologically‐influenced corrosion (MIC) is extremely harmful to both the industry and the environment. Sulfate‐reducing bacteria (SRB) are also important: we have to know…

2673

Abstract

Microbiologically‐influenced corrosion (MIC) is extremely harmful to both the industry and the environment. Sulfate‐reducing bacteria (SRB) are also important: we have to know what they really are and what they really do to us; this means we have to improve our understanding of SRB and their characteristics. MIC is the officially accepted terminology by NACE[1] to address this type of corrosion. It is a kind of corrosion in which effects of certain microorganisms are felt. MIC is still a matter open for discussion: we cannot explain what is really meant by “microbiological” component, i.e. does it express the possibility that some microbial activity observed at corroded sites on metal surfaces may not result from bacterial growth on metal, but rather that chemical or electrochemical attack on the metal may provide a favorable niche for bacteria to grow? Nor can we be sure about our understanding of the importance of working mechanisms and even the types of microorganisms involved in MIC. In order to have a deeper understanding about corrosion caused by sulfate‐reducing bacteria (SRB), we have to know more about SRB themselves. So, after discussing the importance of MIC, we will mainly focus on SRB and their characteristics that may be new and interesting to the reader.

Details

Anti-Corrosion Methods and Materials, vol. 46 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 August 1962

P.W. Sherwood

Bacterial action often constitutes a major cause of corrosion in petroleum refineries and similar plant. The problem occurs in three major areas: in underground structures, in…

Abstract

Bacterial action often constitutes a major cause of corrosion in petroleum refineries and similar plant. The problem occurs in three major areas: in underground structures, in cooling water systems and in storage facilities for both crude and refined petroleum products. What are the factors upon which bacterial corrosion depends and what are the remedies?

Details

Anti-Corrosion Methods and Materials, vol. 9 no. 8
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 31 March 2022

Lina Qiu, Jin Tian, Weiwei Zhang, Aijun Gong and Weiyu Zhao

Sulfate-reducing bacteria (SRB) are recognized by scholars as the most important class of bacteria leading to corrosion of metal materials. It is important to use the properties…

Abstract

Purpose

Sulfate-reducing bacteria (SRB) are recognized by scholars as the most important class of bacteria leading to corrosion of metal materials. It is important to use the properties of microorganisms to inhibit the growth of SRB in the corrosion protection of metal materials and to protect the environment.

Design/methodology/approach

In this work, the behavior of anaerobic Thiobacillus denitrificans (TDN) intracellular enzyme inhibition of SRB corrosion of EH36 steel was investigated with electrochemical impedance spectroscopy, biological detection technology and X-ray photoelectron spectroscopy.

Findings

Results showed that the SRB crude intracellular enzyme affected the corrosion behavior of EH36 steel greatly and the purified TDN intracellular enzyme inhibits SRB intracellular enzyme corrosion to EH36 steel.

Originality/value

A perfect enzyme activity inhibition mechanism will provide theoretical guidance for the selection and application of anticorrosion microorganisms, which is of scientific significance in the field of microbial anticorrosion research.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 September 2022

Yaxin Ma, Hong Zhang, Yifei Gao, Zhengxing Men, Ling He and Jianguo Cao

This paper aims to investigate the reason for natural gas leakage from transmission pipelines between Linyi and Shouguang in China during sealing tests, explore the failure…

Abstract

Purpose

This paper aims to investigate the reason for natural gas leakage from transmission pipelines between Linyi and Shouguang in China during sealing tests, explore the failure mechanism and provide a reference for taking reasonable measures to prevent such accidents.

Design/methodology/approach

Failure analysis for the steel pipe has been addressed with different methods, such as microstructure analysis, inclusion analysis, corrosion product analysis, macro- and micro-morphology analyses and bacterially catalyzed experiments.

Findings

Several bulges were observed, especially at the bottom of the steel pipe sample, with the distribution and positioning not related to the weld. The inner surface of the steel pipe was severely corroded, and the oxide scale was flaking in many places. The greatest corrosion area was identified at the bottom of the steel pipe near the gas leakage point. Severe pitting and perforation corrosion in the pipeline were observed, and the main corrosion reaction products were Fe3O4, FeO and FeS. The grain orientation distribution near the crack (coarse grains <101> and fine grains <111> at the microcrack tip) indicates that fine grains may be beneficial in hindering crack propagation.

Originality/value

The principal mechanism for the corrosion failure is supposed to be due to the interaction of chloride ions with the sulfate-reducing microorganisms present and the stress corrosion cracking by chloride and sulfide formed by the sulfate-reducing microorganisms.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 September 1960

W. Summer

Of the several causes of corrosion, bacteria form the least well‐known single group of agents. It may sound strange that microbes should cause metals to corrode. However, it is…

Abstract

Of the several causes of corrosion, bacteria form the least well‐known single group of agents. It may sound strange that microbes should cause metals to corrode. However, it is not the bacteria but their metabolic products which are the causative agents. This discussion of the metabolic principles involved describes the type of corrosion to be expected and indicates methods of prevention.

Details

Anti-Corrosion Methods and Materials, vol. 7 no. 9
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 11 May 2018

L.M. Quej-Ake, A. Contreras and Jorge Aburto

The purpose of this research is to study different extra-heavy crude oil-in-water emulsions that can be found in practice for corrosion process of X52 steel adding 60 mg.L-1 of…

Abstract

Purpose

The purpose of this research is to study different extra-heavy crude oil-in-water emulsions that can be found in practice for corrosion process of X52 steel adding 60 mg.L-1 of non-ionic surfactant and a corrosion inhibitor (CI). Electrochemical impedance spectroscopy and Tafel plots are carried out. Thus, Bode-modulus and Bode-phase angle plots are discussed. Adsorption isotherms obtained from corrosion rate (CR) values are taken into account.

Design/methodology/approach

Two-electrode arrangement is used to characterize the pseudo-capacitance values for X52 steel exposed to water and crude oil phases, mainly. Electrochemical evaluations for X52 steel exposed to extra-heavy crude oil-in-water emulsions are recorded in a conventional three-electrode cell to study the corrosion process as was documented in detail by Quej-Ake et al. (2015). Therefore, all electrodes are placed as close as possible to eliminate the iR-drop.

Findings

Pseudo-capacitance analysis shows that X52 steel immersed in oilfield produced water was more susceptible to corrosion than that immersed in ocean water solution and extra-heavy crude oil phase. After being analyzed, the X52 steel surface coverage and adsorption process for surfactant and CI could be concluded that surfactant could protect the metal surface. In a coalescence extra-heavy crude oil-in-water emulsion, the water medium generated a new solution that was more corrosive than the original water phase. Wash crude oil process was provoked in emulsion systems to sweep up the salts, mainly. Thus, corrosive species that can be recovered inside extra-heavy crude oil may appear, and in turn a new more corrosive solution could be obtained. Taking into account the straight line obtained in Bode-modulus plot for X52 exposed to extra-heavy crude oil, it is possible to point out that the negative value of the slope or R2 can be related to a coefficient (Jorcin et al., 2006). It is important to mention that electrochemical responses for X52 steel exposed to extra-heavy crude oil-in-water under coalescence emulsions revealed that corrosion and diffusion processes exist. Therefore, a possible good inhibitor is surfactant in emulsion systems.

Originality/value

CR and anodic and cathodic slopes suggest that the surfactant acted as mixed CI. Of these, susceptible anodic (MnS and perlite or cementite) and cathodic (ferrite) sites on steel surface could be affected, due to which physicochemical adsorption could happen by using electrochemical parameters analysis. Thus, no stable emulsions should be taken into account for extra-heavy crude oil transportation, because corrosion problems in atmospheric distillation process of the crude oil due to stable emulsion cannot be easily separated. In this manner, coalescent emulsions are more adequate for transporting extra-heavy crude oil because low energy to separate the water media is required.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 186