Search results

1 – 3 of 3
Open Access
Article
Publication date: 19 July 2021

Himani Naesstroem, Frank Brueckner and Alexander F.H. Kaplan

This paper aims to gain an understanding of the behaviour of iron ore when melted by a laser beam in a continuous manner. This fundamental knowledge is essential to further…

Abstract

Purpose

This paper aims to gain an understanding of the behaviour of iron ore when melted by a laser beam in a continuous manner. This fundamental knowledge is essential to further develop additive manufacturing routes such as production of low cost parts and in-situ reduction of the ore during processing.

Design/methodology/approach

Blown powder directed energy deposition was used as the processing method. The process was observed through high-speed imaging, and computed tomography was used to analyse the specimens.

Findings

The experimental trials give preliminary results showing potential for the processability of iron ore for additive manufacturing. A large and stable melt pool is formed in spite of the inhomogeneous material used. Single and multilayer tracks could be deposited. Although smooth and even on the surface, the single layer tracks displayed porosity. In case of multilayered tracks, delamination from the substrate material and deformation can be seen. High-speed videos of the process reveal various process phenomena such as melting of ore powder during feeding, cloud formation, melt pool size, melt flow and spatter formation.

Originality/value

Very little literature is available that studies the possible use of ore in additive manufacturing. Although the process studied here is not industrially useable as is, it is a step towards processing cheap unprocessed material with a laser beam.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Content available
Article
Publication date: 5 May 2015

2

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 62 no. 3
Type: Research Article
ISSN: 0003-5599

Open Access
Article
Publication date: 8 May 2018

Stef Lommen, Gabriel Lodewijks and Dingena L. Schott

Bulk material-handling equipment development can be accelerated and is less expensive when testing of virtual prototypes can be adopted. However, often the complexity of the…

2044

Abstract

Purpose

Bulk material-handling equipment development can be accelerated and is less expensive when testing of virtual prototypes can be adopted. However, often the complexity of the interaction between particulate material and handling equipment cannot be handled by a single computational solver. This paper aims to establish a framework for the development, verification and application of a co-simulation of discrete element method (DEM) and multibody dynamics (MBD).

Design/methodology/approach

The two methods have been coupled in two directions, which consists of coupling the load data on the geometry from DEM to MBD and the position data from MBD to DEM. The coupling has been validated thoroughly in several scenarios, and the stability and robustness have been investigated.

Findings

All tests clearly demonstrated that the co-simulation is successful in predicting particle–equipment interaction. Examples are provided describing the effects of a coupling that is too tight, as well as a coupling that is too loose. A guideline has been developed for achieving stable and efficient co-simulations.

Originality/value

This framework shows how to achieve realistic co-simulations of particulate material and equipment interaction of a dynamic nature.

Details

Engineering Computations, vol. 35 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Access

Only content I have access to

Year

Content type

1 – 3 of 3