Search results

1 – 10 of 29
Article
Publication date: 24 April 2024

Ali Hassanzadeh, Ebrahim Ghorbani-Kalhor, Khalil Farhadi and Jafar Abolhasani

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Abstract

Purpose

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Design/methodology/approach

Sodium silicate is adopted as a substrate for GO and AgNPs with positive charge are used as modifiers. The synthesized nanocomposite is characterized by FTIR, FESEM, EDS, BET and XRD techniques. Then, some of the most effective parameters on the removal of CR and MB dyes such as solution pH, sorbent dose, adsorption equilibrium time, primary dye concentration and salt effect are optimized using the spectrophotometry technique.

Findings

The authors successfully achieved notable maximum adsorption capacities (Qmax) of CR and MB, which were 41.15 and 37.04 mg g−1, respectively. The required equilibrium times for maximum efficiency of the developed sorbent were 10 and 15 min for CR and MB dyes, respectively. Adsorption equilibrium data present a good correlation with Langmuir isotherm, with a correlation coefficient of R2 = 0.9924 for CR and R2 = 0.9904 for MB, and kinetic studies prove that the dye adsorption process follows pseudo second-order models (CR R2 = 0.9986 and MB R2 = 0.9967).

Practical implications

The results showed that the proposed mechanism for the function of the developed sorbent in dye adsorption was based on physical and multilayer adsorption for both dyes onto the active sites of non-homogeneous sorbent.

Originality/value

The as-prepared nano-adsorbent has a high ability to remove both cationic and anionic dyes; moreover, to the high efficiency of the adsorbent, it has been tried to make its synthesis steps as simple as possible using inexpensive and available materials.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 April 2022

Hanieh Shaki

In this study, polyvinyl alcohol (PVA)/poly[acrylic acid (AAc)-co-acrylamide (AM)] composite hydrogel was prepared by radical copolymerization in the presence of Fe3+

Abstract

Purpose

In this study, polyvinyl alcohol (PVA)/poly[acrylic acid (AAc)-co-acrylamide (AM)] composite hydrogel was prepared by radical copolymerization in the presence of Fe3+ freezing-thawing method. The swelling behavior of the hydrogel was investigated. The novel synthesized hydrogel was used as an adsorbent for the removal of dyes from aqueous solutions. In this paper, methylene blue and maxilon blue 5G were selected as representative cationic dyes. In addition, adsorption isotherm models were used to describe the dye adsorption process.

Design/methodology/approach

The prepared composite hydrogel was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, field emission scanning electron microscopy and UV–visible.

Findings

The prepared hydrogel exhibited excellent adsorption ability for both dyes. Various experimental conditions affecting the dye adsorption were explored to achieve maximum removal of both dyes. In addition, adsorption isotherm models were used to describe the dye adsorption process.

Originality/value

To the best of the author’s knowledge, synthesis of PVA/poly(AAc-co-AM) composite hydrogel in the presence of Fe3+ and investigation of the removal of methylene blue and maxilon blue 5G dyes is done for the first time successfully.

Details

Pigment & Resin Technology, vol. 52 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 August 2022

Hanieh Shaki

In this study, the removal of a series of acid dyes by hybrid polymer adsorbent was investigated. Textile industry wastewater is mainly consisted of suspended solid particles and…

Abstract

Purpose

In this study, the removal of a series of acid dyes by hybrid polymer adsorbent was investigated. Textile industry wastewater is mainly consisted of suspended solid particles and organic compounds with complex and nondecomposable structures. Treatment of such wastewaters has received much attention by researchers because of high water consumption and the presence of various chemical compounds, especially dyes. The use of polymers has recently attracted much attention for the treatment of textile wastewaters. According to the literature, hybrid polymers are highly capable of adsorbing dyes. In this research work, polyacrylamide/iron sulfate (PAM-FeSO4) hybrid polymer was successfully synthesized through solution polymerization of acrylamide with ammonium persulfate and sodium thiosulfate and gradual addition of iron sulfate. The hybrid polymeric adsorbent was then used for removing acidic dyes with different chemical structures.

Design/methodology/approach

The effects of various experimental conditions and parameters, such as initial concentrations of dye and adsorbent, on the adsorption capacity of the adsorbent were investigated. The dye concentration was measured by an UV–vis spectrophotometer. The adsorption equilibrium was studied by plotting adsorption isotherms. The experimental data was fitted to Langmuir and Freundlich isotherms.

Findings

The adsorption experiments indicated that the PAM-FeSO4 hybrid polymer has a high adsorption capacity (117.64 mg g−1 for the Orange ІІ and 80.64 mg g−1 for the Sunset Yellow [SY]) when 80 mg of adsorbent was immersed in the dye solution (1 g L−1) with a pH of 11 at 25°C. The analysis of the equilibrium isotherms using the Langmuir and Freundlich isotherms indicated that the Langmuir model fit well to the experimental data.

Originality/value

To the best of the authors’ knowledge, this study is original. The removal of acid dyes such as Sunset Yellow and Methyl Orange using PAM-FeSO4 hybrid polymer as flocculant was done for the first time.

Details

Pigment & Resin Technology, vol. 52 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 March 2024

Gülçin Baysal

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Abstract

Purpose

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Design/methodology/approach

The integration levels of the sensors studied with the textile materials are changing. Some research teams have used a combination of printing and textile technologies to produce sensors, while a group of researchers have used traditional technologies such as weaving and embroidery. Others have taken advantage of new technologies such as electro-spinning, polymerization and other techniques. In this way, they tried to combine the good working efficiency of the sensors and the flexibility of the textile. All these approaches are presented in this article.

Findings

The presentation of the latest technologies used to develop textile sensors together will give researchers an idea about new studies that can be done on highly sensitive and efficient textile-based moisture sensor systems.

Originality/value

In this paper humidity sensors have been explained in terms of measuring principle as capacitive and resistive. Then, studies conducted in the last 20 years on the textile-based humidity sensors have been presented in detail. This is a comprehensive review study that presents the latest developments together in this area for researchers.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 February 2024

Nancy Sobh, Nagla Elshemy, Sahar Nassar and Mona Ali

Due to herbs and plants’ therapeutic properties and simplicity of availability in nature, humans have used them to treat a variety of maladies and diseases since ancient times…

Abstract

Purpose

Due to herbs and plants’ therapeutic properties and simplicity of availability in nature, humans have used them to treat a variety of maladies and diseases since ancient times. Later, as technology advanced, these plants and herbs gained significant relevance in some industries due to their suitable chemical composition, abundant availability and ease of access. Aegle marmelos is a species of plant that may be found in nature. Yet, little or very little literature was located on the coloration behavior of this plant’s leaves. This study aims to focus on the effect of different parameters on the extraction of colorant from Aegle marmelos leaves.

Design/methodology/approach

Some factors that affected on the extraction processes were examined and found to have significant impacts on the textile dyeing such as the initial dye concentration, extracted temperature, extracted bath pH and extracted time were all changed to see how they affected color extraction. The authors report a direct comparison between three heating methods, namely, microwave irradiation (MWI), ultrasonic waves (USW) and conventional heating (CH). The two kinetic models have been designed (pseudo-first and pseudo-second orders) in the context of these experiments to investigate the mechanism of the dyeing processes for fabrics under study. Also, the experimental data were analyzed according to the Langmuir and Freundlich isotherms.

Findings

From the result, it was discovered these characteristics were found to have a substantial effect on extraction efficiency. Temperature 90°C and 80°C when using CH and USW, respectively, while at 90% watt when using MWI, period 120 min when using CH as well as USW waves, while 40 min when using MWI, and pH 4, 5 and 10 for polyamide, wool and cotton, respectively, were the optimal extraction conditions. Also, the authors can say that wool gives a higher absorption than the other fabric. Additionally, MWI provided the best color strength (K/S) value, and homogeneity, at low temperatures reducing the energy and time consumed. The coloring follows the order: MWI > USW > CH. The adsorption isotherm of wool could be well fitted by Freundlich isotherm when applying CH and USW as a heating source, while it is well fitted by the Langmuir equation in the case of MWI. In the study, it was observed that the pseudo-first-order kinetic model fits better the experimental results of CH with a constant rate K1 = −0.000171417 mg/g.min, while the pseudo-second-order kinetic model fits better the experimental results of absorption of both MWI (K2 = 38.14022572 mg/g.min) and USW (K2 = 12.45343554 mg/g.min).

Research limitations/implications

There is no research limitation for this work. Dye was extracted from Aegle marmelos leaves by applying three different heating sources (MWI, ultrasonic waves [USWW] and CH).

Practical implications

This work has practical applications for the textile industry. It is concluded that using Aegle marmelose leaves can be a possible alternative to extract dye from natural resource by applying new technology to save energy and time and can make the process greener.

Social implications

Socially, it has a good impact on the ecosystem and global community because the extracted dye does not contain any carcinogenic materials.

Originality/value

The work is original and contains value-added products for the textile industry and other confederate fields.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 February 2022

Zheqing Gong, Shusen Cao, Zhibin Cai and Lijun Chen

There are three double bonds in the chemical structure of diallyl maleate. The purpose of this study is that the acrylate is modified with diallyl maleic anhydride to make the…

Abstract

Purpose

There are three double bonds in the chemical structure of diallyl maleate. The purpose of this study is that the acrylate is modified with diallyl maleic anhydride to make the propionate resin present a spatial network structure, thereby improving the performance of the acrylate resin.

Design/methodology/approach

Methyl methacrylate (MMA) and butyl acrylate(BA) were used as were used as main monomers. Diallyl maleate (DAM) was used as crosslinking monomer and dodecafluoroheptyl methacrylate (DFMA) was used as fluoromonomer. Potassium persulfate (KPS) was used as thermal decomposition initiator, sodium lauryl sulfate (AS) and sodium dodecyl sulfonate (SDS) were used as anionic emulsifiers, and EFS-470 (Alkyl alcohol polyether type nonionic emulsifier) was a non-ionic emulsifier.

Findings

Through optimizing the reaction conditions, the uniform and stable latex is obtained. The polymer of structure was characterized by Fourier transform infrared spectroscopy (FTIR). Thermogravimetric analysis (TGA) and contact angle (CA) were tested on latex films. The particle size and distribution range of emulsion were tested with nano particle size analyzer.

Originality/value

The experimental results showed that the thermal decomposition temperature of the acrylic coating film increased by 20.56°C after modification. In addition, the effect of cross-linking density on the water contact angle of the fluorocarbon groups in DFMA when they migrate to the surface of the latex film during drying has been explored. The experimental results show that a higher degree of cross-linking will hinder the migration of fluorocarbon groups to the surface of the resin film.

Article
Publication date: 28 July 2022

Priyanka Sakare, Saroj Kumar Giri, Debabandya Mohapatra and Manoj Kr Tripathi

This paper aims to study the color change kinetics of lac dye in response to pH and food spoilage metabolites (ammonia, lactic acid and tyramine) for its potential application in…

Abstract

Purpose

This paper aims to study the color change kinetics of lac dye in response to pH and food spoilage metabolites (ammonia, lactic acid and tyramine) for its potential application in intelligent food packaging.

Design/methodology/approach

UV-Vis spectroscopy was used to study the color change of dye solution. Ratio of absorbance of dye solution at 528 nm (peak of ionized form) to absorbance at 488 nm (peak of unionized form) was used to study the color change. Color change kinetics was studied in terms of change in absorbance ratio (A528/A488) with time using zero- and first-order reaction kinetics. An indicator was prepared by incorporating lac dye in agarose membrane to validate the result of study for monitoring quality of raw milk.

Findings

Dye was orange-red in acidic medium (pH: 2 to 5) and exhibited absorbance peak at 488 nm. It turned purple in alkaline medium (pH: 7 to10) and exhibited absorbance peak at 528 nm. The change in absorbance ratio with pH followed zero-order model. Acid dissociation constant (pKa) of dye was found to be 6.3. Color change of dye in response to ammonia and tyramine followed zero-order reaction kinetics, whereas for lactic acid, the first-order model was found best. In the validation part, the color of the indicator label changed from purple to orange-red when the milk gets spoiled.

Originality/value

The study opens a new application area for lac dye. The results suggest that lac dye has potential to be used as an indicator in intelligent food packaging for detection of spoilage in seafood, meat, poultry and milk.

Details

Pigment & Resin Technology, vol. 53 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 February 2024

Shuangjiu Deng, Chang Li, Xing Han, Menghui Yu and Han Sun

The restoration and strengthening of QT600 is an industry bottleneck challenge. The Co-12 cladding layer has great wear and corrosion resistance. The purpose of this paper is to…

Abstract

Purpose

The restoration and strengthening of QT600 is an industry bottleneck challenge. The Co-12 cladding layer has great wear and corrosion resistance. The purpose of this paper is to quantitatively reveal the transient evolution law of the corrosion process of Co-12 cladding layer on QT600 surface.

Design/methodology/approach

In this paper, a three-dimensional numerical model of the corrosion process of Co-12 cladding layer by QT600 laser cladding is established. The interaction between pitting pits and corrosion medium is considered to reveal the transient evolution of ion concentration, electrode potential, pH and corrosion rate at different locations.

Findings

The calculation shows that the ion concentration in pitting pit changes Cl>Co2+>Na+, pH value decreases from top to bottom and corrosion rate at bottom is greater than that at top. The electrochemical corrosion test of Co-12 cladding layer was carried out. It is shown that the current density of QT600 increases by an order of magnitude compared to the Co-12 cladding layer, and the corrosion rate is 4.862 times higher than that of the cladding layer.

Originality/value

The results show that Co-12 cladding layer has great corrosion resistance, which provides an effective way for QT600 protection.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 2 March 2022

Maryam Khashij, Mohammad Hossein Salmani, Arash Dalvand, Hossien Fallahzadeh, Fatemeh Haghirosadat and Mehdi Mokhtari

This paper aims to investigation of processes for Pb2+ elimination from water/wastewater as a significant public health issue in many parts of world. The removal of Pb2+ ions by…

Abstract

Purpose

This paper aims to investigation of processes for Pb2+ elimination from water/wastewater as a significant public health issue in many parts of world. The removal of Pb2+ ions by various nanocomposites has been explained from water/wastewaters. ZnO-based nanocomposites, as eco-friendly nanoparticles with unique physicochemical properties, have received increased attention to remove Pb2+ ions from water/wastewaters.

Design/methodology/approach

In this review, different ZnO-based nanocomposites were reviewed for their application in the removal of Pb2+ ions from the aqueous solution, typically for wastewater treatment using methodology, such as adsorption. This review focused on the ZnO-based nanocomposites for removing Pb2+ ions from water and wastewaters systems.

Findings

The ZnO-based nanocomposite was prepared by different methods, such as electrospinning, hydrothermal/alkali hydrothermal, direct precipitation and polymerization. Depending on the preparation method, various types of ZnO-based nanocomposites like ZnO-metal (Cu/ZnO, ZnO/ZnS, ZnO/Fe), ZnO-nonmetal (PVA/ZnO, Talc/ZnO) and ZnO-metal/nonmetal (ZnO/Na-Y zeolite) were obtained with different morphologies. The effects of operational parameters and adsorption mechanisms were discussed in the review.

Research limitations/implications

The findings may be greatly useful in the application of the ZnO-based nanocomposite in the fields of organic and inorganic pollutants adsorption.

Practical implications

The present study is novel, because it investigated the morphological and structural properties of the synthesized ZnO-based nanocomposite using different methods and studied the capability of green-synthesized ZnO-based nanocomposite to remove Pb2+ ions as water contaminants.

Social implications

The current review can be used for the development of environmental pollution control measures.

Originality/value

This paper reviews the rapidly developing field of nanocomposite technology.

Details

Pigment & Resin Technology, vol. 52 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 20 October 2023

Junling Wu, Longfei Sun and Long Lin

This study aims to dye silk with natural pigments extract of Coreopsis tinctoria, by treating the fabrics with appropriate mordant under suitable dyeing conditions, to achieve…

22

Abstract

Purpose

This study aims to dye silk with natural pigments extract of Coreopsis tinctoria, by treating the fabrics with appropriate mordant under suitable dyeing conditions, to achieve good dyeing depth, fastness and ultraviolet (UV) protection.

Design/methodology/approach

Firstly, single factor experiments were used to determine the basic dyeing conditions of Coreopsis tinctoria. The optimal process conditions for direct dyeing were determined through orthogonal experiments. After that, the dyeing with mordant was used. Based on the previously determined optimal process conditions, silk fabrics were dyed with different mordanting methods, with different mordants and mordant dosages. The dyeing results were compared, in terms of the K/S values of the dyed fabrics, to determine the most appropriate dyeing conditions with mordant.

Findings

The extract of Coreopsis tinctoria can dye silk fabrics satisfactorily. Good dyeing depth and fastness can be obtained by using suitable dyeing methods and dyeing conditions, especially when using the natural mordant pomegranate rind and the rare earth mordant neodymium oxide. The silk fabrics dyed with Coreopsis tinctoria have good UV resistance, which allows a desirable finishing effect to be achieved while dyeing, using a safe and environmentally friendly method.

Research limitations/implications

The composition of Coreopsis tinctoria is complex, and the specific composition of colouring the silk fibre has not been determined. There are many factors that affect the dyeing experiment, which have an impact on the experimental results.

Practical implications

The results of this study may help expand the application of Coreopsis tinctoria beyond medicine.

Originality/value

To the best of the authors’ knowledge, this paper is the first report on dyeing silk with the extract of Coreopsis tinctoria achieving good dyeing results. Its depth of staining and staining fastness were satisfactory. Optimum dyeing method and dyeing conditions have been identified. The fabric dyed with Coreopsis tinctoria has good UV protection effect, which is conducive to improving the application value of the dyeing fabric. The findings help offer a new direction for the application of medicinal plants in the eco-friendly dyeing of silk.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 29