Search results

1 – 10 of 265
Article
Publication date: 22 March 2013

V. Muthukumaran, M. Senthil kumar and V. Selladurai

The purpose of the paper is to study effect of the implantation of oxygen and helium ions on the corrosion performance of the AISI3l6L stainless steel. It presents useful new…

Abstract

Purpose

The purpose of the paper is to study effect of the implantation of oxygen and helium ions on the corrosion performance of the AISI3l6L stainless steel. It presents useful new results which allows one to draw conclusions as to the suitability of the helium and oxygen ion implanted AISI 316L stainless steel for biomedical use in the body.

Design/methodology/approach

The implantation of oxygen and helium ions was done on AISI 316L SS at an energy level of 100 keV at a dose of 1×1017 ions/cm2, at room temperature. In order to simulate the natural tissue environment, an electrochemical test using cyclic polarization was done in a 0.9 percent sodium chloride solution at a pH value of 6.3 at 37°C. This was carried out on both the virgin and implanted AISI 316L stainless steel for the purpose of comparing performance. In addition to this, the hardness of the virgin and implanted samples was also studied using Vickers microhardness tester with varying loads. Besides, the surface morphologies of the implanted samples and the corroded samples were studied with XRD and SEM.

Findings

From the study the following findings are made. First, the XRD and SEM results were found to be in accordance with the corrosion test results. Second, the general corrosion behavior showed a significant improvement in the case of both helium implanted (icorr=0.0689 mA/cm2) and oxygen implanted (icorr=1.104 mA/cm2), when compared to the virgin AISI 316L SS (icorr=1.2187 mA/cm2). The pitting corrosion showed a significant improvement for helium implanted (Epit=230 mV) when compared to virgin material (Epit=92 mV). The oxygen implanted has not shown any improvement (Epit=92 mV). The surface hardness is found to be 1202 HV for helium implanted and 1020 HV for oxygen implanted, while it is found to be 195 HV for the virgin material. The hardness of the helium and oxygen implanted samples is found to be increased by about 600 percent and 500 percent, respectively, when compared to the virgin samples. Helium implanted samples show better performance in terms of corrosion resistance and hardness when compared to those of the oxygen implanted samples.

Originality/value

Although a number of authors have conducted many research on AISI 316L stainless steel, this work has original experimental results in terms of the oxygen and helium ion implantation parameters used and the specific tests: microhardness, electrochemical corrosion test, SEM and XRD that were used. It thus presents useful new results which allows one to draw conclusions as to the suitability of the Helium and Oxygen ion implanted AISI 316L stainless steel for biomedical use.

Details

Journal of Engineering, Design and Technology, vol. 11 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 April 1992

G. Hobler and H. Pötzl

The effect of a screening oxide layer on 1‐D and 2‐D ion implantation profiles in silicon is investigated using Monte Carlo simulations. Experimental observations of profile…

Abstract

The effect of a screening oxide layer on 1‐D and 2‐D ion implantation profiles in silicon is investigated using Monte Carlo simulations. Experimental observations of profile broadening by oxide layers are explained by the fact that atoms at lattice positions are less effective in steering ions into channels than atoms at random positions. The influence of the oxide layer on the lateral penetration below a mask is discussed in terms of implantation energy and ion species. A new set of parameters for the electronic stopping of phosphorus and arsenic in silicon is used.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 11 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 9 October 2019

K.M. Deen, A. Farooq, M. Rizwan, A. Ahmad and W. Haider

This study/paper aims to the authors applied low “Si” ions dose over cp-Ti-2, and the potent dose level was optimized for adequate corrosion resistance and effective proliferation…

Abstract

Purpose

This study/paper aims to the authors applied low “Si” ions dose over cp-Ti-2, and the potent dose level was optimized for adequate corrosion resistance and effective proliferation of stem cells.

Design/methodology/approach

The cp-Ti surface was modified by silicon (Si) ions beam at 0.5 MeV in a Pelletron accelerator. Three different ion doses were applied to the polished samples, and the surface was characterized by XRD and AFM analysis.

Findings

At moderate “Si” ion dose (6.54 × 1012 ions-cm−2), the potential shifted to a noble value. The small “icorr” (1.22 µA.cm−2) and relatively large charge transfer resistance (43.548 kΩ-cm2) in the ringer‘s lactate solution was confirmed through Potentiodynamic polarization and impedance spectroscopy analysis. Compared to cp-Ti and other doses, this dose level also provided the effective proliferation of mesenchymal stem cells.

Originality/value

The dosage levels used were different to previous work and provided the effective proliferation of mesenchymal stem cells.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 12 March 2018

Yuan Wang

The main purpose of this study is to enhance bio-tribological properties of Ti6Al4V and the surface-modified layers of Ni+/N+-implanted Ti6Al4V alloy, bionic texturing was done on…

Abstract

Purpose

The main purpose of this study is to enhance bio-tribological properties of Ti6Al4V and the surface-modified layers of Ni+/N+-implanted Ti6Al4V alloy, bionic texturing was done on Ti6Al4V surface.

Design/methodology/approach

The phase compositions and nano-hardness of the surface-modified layers of the samples have been analyzed by X-ray diffractometer and Nano Indenter, respectively. This paper has conducted bio-tribological tests under artificial saliva, sodium hyalurate and sodium hyalurate +γ-globulin by micro tribology multifunction tribometer, with ZrO2 ball/modified layer as the friction pair. S-3000N scanning electron microscope has been used to analyze the morphology of the surface-modified layers and scratches of the ones after the bio-tribological tests.

Findings

The results show that the surface-modified layers were mainly composed of Ti2Ni and Ti2N. Moreover, bionic texturing can obviously increase the contents of Ti2Ni and Ti2N that were formed on the surface of Ni+/N+-implanted Ti6Al4V alloy, and enhance the nano-hardness of the surface-modified layers. It could also reduce the friction coefficients of the surface-modified layers, and render the modified layers more wear-resistant.

Originality/value

The surface bio-tribological properties of Ti6Al4V have been enhanced by ion implantation technique and bionic texturing in this paper; this provided a new method for the research of related fields.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3545

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 July 1979

Americus

An article by Carra and Cavallotti [L'Industria della Vernice, 30, 11 (1976) p. 9] discussed the fundamental aspects of corrosion protection by organic coatings with emphasis on…

Abstract

An article by Carra and Cavallotti [L'Industria della Vernice, 30, 11 (1976) p. 9] discussed the fundamental aspects of corrosion protection by organic coatings with emphasis on two parameters, adhesion and permeability to corrosive agents. Included is a mathematical treatment of the thermodynamics of adhesion.

Details

Pigment & Resin Technology, vol. 8 no. 7
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 24 May 2011

Reza Shoja Razavi, Gholam Reza Gordani and H.C. Man

The purpose of this paper is to consider the corrosion properties of laser nitrided Ti‐6Al‐4V alloys that have been reported previously by several researchers.

1105

Abstract

Purpose

The purpose of this paper is to consider the corrosion properties of laser nitrided Ti‐6Al‐4V alloys that have been reported previously by several researchers.

Design/methodology/approach

Different kinds of surface nitriding methods of titanium alloys, such as plasma nitriding, ion nitriding, gas and laser nitriding, are introduced. Microstructure changes, such as phase formation and the influence of laser processing parameters in laser nitriding layers of Ti‐6Al‐4V alloys, were investigated using scanning electron microscope, transmission electron microscope, X‐ray photo‐electron spectroscopy, and X‐ray diffraction. Based on investigations presented in the literature, the effect of laser nitriding on the corrosion behavior of Ti‐6Al‐4V alloy was reviewed.

Findings

By regulating the laser processing parameter, the microstructure of the nitrided layer can be controlled to optimize corrosion properties. This layer improves corrosion behavior in most environments, due to the formation of a continuous TiNxOy passive film, which can retard the ingress of corrosive ions into the substrate and can maintain a constant value of a current density. Therefore, the laser gas nitrided specimens have a relatively noble corrosion potential and a very small corrosion current, as compared to untreated specimens.

Originality/value

This paper comprises a critical review, and its collection of references is useful. It summarizes current knowledge in laser surface treatment research.

Details

Anti-Corrosion Methods and Materials, vol. 58 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 January 1983

EVERY so often, somebody comes up with a new idea. Of course, it may be an old idea dressed up, or an idea taken from some other country, so it MUST be good. Always the idea is…

Abstract

EVERY so often, somebody comes up with a new idea. Of course, it may be an old idea dressed up, or an idea taken from some other country, so it MUST be good. Always the idea is intended to be the answer to almost every manufacturer's problems. They are seized on, copied, altered, adapted.

Details

Work Study, vol. 32 no. 1
Type: Research Article
ISSN: 0043-8022

Content available
Article
Publication date: 1 April 2004

223

Abstract

Details

Aircraft Engineering and Aerospace Technology, vol. 76 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 August 1997

D. Mukherjee

Metallic finishing of materials, unlike non‐metallic finishing, comprises various popular surface modification processes, e.g. electroplating, conversion coating, anodizing, metal…

603

Abstract

Metallic finishing of materials, unlike non‐metallic finishing, comprises various popular surface modification processes, e.g. electroplating, conversion coating, anodizing, metal spraying, hot dip coating and also diffusion coatings. Diffusion coatings on metallic substrates are well known for their better abrasion resistance and adhesion to the substrate. Resistance to corrosion may also be incorporated on these surfaces by the addition of appropriate dopant elements like Cr, Ni and Al. However, these diffusion alloy‐layers are more sought after for functional properties than their aesthetic look. It appears that the concept of functional metal finishing is gaining ground for its longer service‐life and better performance. Discusses some of these aspects of diffusion alloy coatings on mild steel substrate and analyses their comparative merits and demerits. In this connection, three distinctly different types of barrier layers, namely, hard diffusion alloy layer, e.g. chromiding, Ni‐Cr diffusion coatings and soft‐diffusion layer, e.g. Pb‐Cd, Zn‐Sn barriers and those in between, e.g. hot dip zinc‐alloy coated barrier layers, have been highlighted for their corrosion resistance properties.

Details

Anti-Corrosion Methods and Materials, vol. 44 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 265