Search results

1 – 10 of 595
Open Access
Article
Publication date: 8 August 2022

Gopal Shruthi and Murugan Suvinthra

The purpose of this paper is to study large deviations for the solution processes of a stochastic equation incorporated with the effects of nonlocal condition.

Abstract

Purpose

The purpose of this paper is to study large deviations for the solution processes of a stochastic equation incorporated with the effects of nonlocal condition.

Design/methodology/approach

A weak convergence approach is adopted to establish the Laplace principle, which is same as the large deviation principle in a Polish space. The sufficient condition for any family of solutions to satisfy the Laplace principle formulated by Budhiraja and Dupuis is used in this work.

Findings

Freidlin–Wentzell type large deviation principle holds good for the solution processes of the stochastic functional integral equation with nonlocal condition.

Originality/value

The asymptotic exponential decay rate of the solution processes of the considered equation towards its deterministic counterpart can be estimated using the established results.

Details

Arab Journal of Mathematical Sciences, vol. 30 no. 1
Type: Research Article
ISSN: 1319-5166

Keywords

Article
Publication date: 8 November 2022

Junlong Peng and Xiang-Jun Liu

This research is aimed to mainly be applicable to expediting engineering projects, uses the method of inverse optimization and the double-layer nested genetic algorithm combined…

Abstract

Purpose

This research is aimed to mainly be applicable to expediting engineering projects, uses the method of inverse optimization and the double-layer nested genetic algorithm combined with nonlinear programming algorithm, study how to schedule the number of labor in each process at the minimum cost to achieve an extremely short construction period goal.

Design/methodology/approach

The method of inverse optimization is mainly used in this study. In the first phase, establish a positive optimization model, according to the existing labor constraints, aiming at the shortest construction period. In the second phase, under the condition that the expected shortest construction period is known, on the basis of the positive optimization model, the inverse optimization method is used to establish the inverse optimization model aiming at the minimum change of the number of workers, and finally the optimal labor allocation scheme that meets the conditions is obtained. Finally, use algorithm to solve and prove with a case.

Findings

The case study shows that this method can effectively achieve the extremely short duration goal of the engineering project at the minimum cost, and provide the basis for the decision-making of the engineering project.

Originality/value

The contribution of this paper to the existing knowledge is to carry out a preliminary study on the relatively blank field of the current engineering project with a very short construction period, and provide a path for the vast number of engineering projects with strict requirements on the construction period to achieve a very short construction period, and apply the inverse optimization method to the engineering field. Furthermore, a double-nested genetic algorithm and nonlinear programming algorithm are designed. It can effectively solve various optimization problems.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 22 March 2024

Douglas Ramalho Queiroz Pacheco

This study aims to propose and numerically assess different ways of discretising a very weak formulation of the Poisson problem.

Abstract

Purpose

This study aims to propose and numerically assess different ways of discretising a very weak formulation of the Poisson problem.

Design/methodology/approach

We use integration by parts twice to shift smoothness requirements to the test functions, thereby allowing low-regularity data and solutions.

Findings

Various conforming discretisations are presented and tested, with numerical results indicating good accuracy and stability in different types of problems.

Originality/value

This is one of the first articles to propose and test concrete discretisations for very weak variational formulations in primal form. The numerical results, which include a problem based on real MRI data, indicate the potential of very weak finite element methods for tackling problems with low regularity.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 April 2024

Jorge Morvan Marotte Luz Filho and Antonio Andre Novotny

Topology optimization of structures under self-weight loading is a challenging problem which has received increasing attention in the past years. The use of standard formulations…

Abstract

Purpose

Topology optimization of structures under self-weight loading is a challenging problem which has received increasing attention in the past years. The use of standard formulations based on compliance minimization under volume constraint suffers from numerous difficulties for self-weight dominant scenarios, such as non-monotonic behaviour of the compliance, possible unconstrained character of the optimum and parasitic effects for low densities in density-based approaches. This paper aims to propose an alternative approach for dealing with topology design optimization of structures into three spatial dimensions subject to self-weight loading.

Design/methodology/approach

In order to overcome the above first two issues, a regularized formulation of the classical compliance minimization problem under volume constraint is adopted, which enjoys two important features: (a) it allows for imposing any feasible volume constraint and (b) the standard (original) formulation is recovered once the regularizing parameter vanishes. The resulting topology optimization problem is solved with the help of the topological derivative method, which naturally overcomes the above last issue since no intermediate densities (grey-scale) approach is necessary.

Findings

A novel and simple approach for dealing with topology design optimization of structures into three spatial dimensions subject to self-weight loading is proposed. A set of benchmark examples is presented, showing not only the effectiveness of the proposed approach but also highlighting the role of the self-weight loading in the final design, which are: (1) a bridge structure is subject to pure self-weight loading; (2) a truss-like structure is submitted to an external horizontal force (free of self-weight loading) and also to the combination of self-weight and the external horizontal loading; and (3) a tower structure is under dominant self-weight loading.

Originality/value

An alternative regularized formulation of the compliance minimization problem that naturally overcomes the difficulties of dealing with self-weight dominant scenarios; a rigorous derivation of the associated topological derivative; computational aspects of a simple FreeFEM implementation; and three-dimensional numerical benchmarks of bridge, truss-like and tower structures.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 5 April 2024

Felipe Sales Nogueira, João Luiz Junho Pereira and Sebastião Simões Cunha Jr

This study aims to apply for the first time in literature a new multi-objective sensor selection and placement optimization methodology based on the multi-objective Lichtenberg…

14

Abstract

Purpose

This study aims to apply for the first time in literature a new multi-objective sensor selection and placement optimization methodology based on the multi-objective Lichtenberg algorithm and test the sensors' configuration found in a delamination identification case study.

Design/methodology/approach

This work aims to study the damage identification in an aircraft wing using the Lichtenberg and multi-objective Lichtenberg algorithms. The former is used to identify damages, while the last is associated with feature selection techniques to perform the first sensor placement optimization (SPO) methodology with variable sensor number. It is applied aiming for the largest amount of information about using the most used modal metrics in the literature and the smallest sensor number at the same time.

Findings

The proposed method was not only able to find a sensor configuration for each sensor number and modal metric but also found one that had full accuracy in identifying delamination location and severity considering triaxial modal displacements and minimal sensor number for all wing sections.

Originality/value

This study demonstrates for the first time in the literature how the most used modal metrics vary with the sensor number for an aircraft wing using a new multi-objective sensor selection and placement optimization methodology based on the multi-objective Lichtenberg algorithm.

Article
Publication date: 12 January 2024

Imtiyaz Ahmad Bhat, Lakshmi Narayan Mishra, Vishnu Narayan Mishra, Cemil Tunç and Osman Tunç

This study aims to discuss the numerical solutions of weakly singular Volterra and Fredholm integral equations, which are used to model the problems like heat conduction in…

Abstract

Purpose

This study aims to discuss the numerical solutions of weakly singular Volterra and Fredholm integral equations, which are used to model the problems like heat conduction in engineering and the electrostatic potential theory, using the modified Lagrange polynomial interpolation technique combined with the biconjugate gradient stabilized method (BiCGSTAB). The framework for the existence of the unique solutions of the integral equations is provided in the context of the Banach contraction principle and Bielecki norm.

Design/methodology/approach

The authors have applied the modified Lagrange polynomial method to approximate the numerical solutions of the second kind of weakly singular Volterra and Fredholm integral equations.

Findings

Approaching the interpolation of the unknown function using the aforementioned method generates an algebraic system of equations that is solved by an appropriate classical technique. Furthermore, some theorems concerning the convergence of the method and error estimation are proved. Some numerical examples are provided which attest to the application, effectiveness and reliability of the method. Compared to the Fredholm integral equations of weakly singular type, the current technique works better for the Volterra integral equations of weakly singular type. Furthermore, illustrative examples and comparisons are provided to show the approach’s validity and practicality, which demonstrates that the present method works well in contrast to the referenced method. The computations were performed by MATLAB software.

Research limitations/implications

The convergence of these methods is dependent on the smoothness of the solution, it is challenging to find the solution and approximate it computationally in various applications modelled by integral equations of non-smooth kernels. Traditional analytical techniques, such as projection methods, do not work well in these cases since the produced linear system is unconditioned and hard to address. Also, proving the convergence and estimating error might be difficult. They are frequently also expensive to implement.

Practical implications

There is a great need for fast, user-friendly numerical techniques for these types of equations. In addition, polynomials are the most frequently used mathematical tools because of their ease of expression, quick computation on modern computers and simple to define. As a result, they made substantial contributions for many years to the theories and analysis like approximation and numerical, respectively.

Social implications

This work presents a useful method for handling weakly singular integral equations without involving any process of change of variables to eliminate the singularity of the solution.

Originality/value

To the best of the authors’ knowledge, the authors claim the originality and effectiveness of their work, highlighting its successful application in addressing weakly singular Volterra and Fredholm integral equations for the first time. Importantly, the approach acknowledges and preserves the possible singularity of the solution, a novel aspect yet to be explored by researchers in the field.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 December 2023

Rouhollah Ostadhossein and Siamak Hoseinzadeh

The main objective of this paper is to investigate the response of human skin to an intense temperature drop at the surface. In addition, this paper aims to evaluate the…

Abstract

Purpose

The main objective of this paper is to investigate the response of human skin to an intense temperature drop at the surface. In addition, this paper aims to evaluate the efficiency of finite difference and finite volume methods in solving the highly nonlinear form of Pennes’ bioheat equation.

Design/methodology/approach

One-dimensional linear and nonlinear forms of Pennes’ bioheat equation with uniform grids were used to study the behavior of human skin. The specific heat capacity, thermal conductivity and blood perfusion rate were assumed to be linear functions of temperature. The nonlinear form of the bioheat equation was solved using the Newton linearization method for the finite difference method and the Picard linearization method for the finite volume method. The algorithms were validated by comparing the results from both methods.

Findings

The study demonstrated the capacity of both finite difference and finite volume methods to solve the one-dimensional and highly nonlinear form of the bioheat equation. The investigation of human skin’s thermal behavior indicated that thermal conductivity and blood perfusion rate are the most effective properties in mitigating a surface temperature drop, while specific heat capacity has a lesser impact and can be considered constant.

Originality/value

This paper modeled the transient heat distribution within human skin in a one-dimensional manner, using temperate-dependent physical properties. The nonlinear equation was solved with two numerical methods to ensure the validity of the results, despite the complexity of the formulation. The findings of this study can help in understanding the behavior of human skin under extreme temperature conditions, which can be beneficial in various fields, including medical and engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 March 2024

Ziming Zhou, Fengnian Zhao and David Hung

Higher energy conversion efficiency of internal combustion engine can be achieved with optimal control of unsteady in-cylinder flow fields inside a direct-injection (DI) engine…

Abstract

Purpose

Higher energy conversion efficiency of internal combustion engine can be achieved with optimal control of unsteady in-cylinder flow fields inside a direct-injection (DI) engine. However, it remains a daunting task to predict the nonlinear and transient in-cylinder flow motion because they are highly complex which change both in space and time. Recently, machine learning methods have demonstrated great promises to infer relatively simple temporal flow field development. This paper aims to feature a physics-guided machine learning approach to realize high accuracy and generalization prediction for complex swirl-induced flow field motions.

Design/methodology/approach

To achieve high-fidelity time-series prediction of unsteady engine flow fields, this work features an automated machine learning framework with the following objectives: (1) The spatiotemporal physical constraint of the flow field structure is transferred to machine learning structure. (2) The ML inputs and targets are efficiently designed that ensure high model convergence with limited sets of experiments. (3) The prediction results are optimized by ensemble learning mechanism within the automated machine learning framework.

Findings

The proposed data-driven framework is proven effective in different time periods and different extent of unsteadiness of the flow dynamics, and the predicted flow fields are highly similar to the target field under various complex flow patterns. Among the described framework designs, the utilization of spatial flow field structure is the featured improvement to the time-series flow field prediction process.

Originality/value

The proposed flow field prediction framework could be generalized to different crank angle periods, cycles and swirl ratio conditions, which could greatly promote real-time flow control and reduce experiments on in-cylinder flow field measurement and diagnostics.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Open Access
Article
Publication date: 30 October 2023

Guido Migliaccio and Andrea De Palma

This study illustrates the economic and financial dynamics of the sector, analysing the evolution of the main ratios of profitability and financial structure of 1,559 Italian real…

1243

Abstract

Purpose

This study illustrates the economic and financial dynamics of the sector, analysing the evolution of the main ratios of profitability and financial structure of 1,559 Italian real estate companies divided into the three macro-regions: North, Centre and South, in the period 2011–2020. In this way, it is also possible to verify the responsiveness to the 2020 pandemic crisis.

Design/methodology/approach

The analysis uses descriptive statistics tools and the ANOVA method of analysis of variance, supplemented by the Tukey–Kramer test, to identify significant differences between the three Italian macro-regions.

Findings

The study shows the increase in profitability after the 2008 crisis, despite its reverberation in the years 2012–2013. The financial structure of companies improved almost everywhere. The pandemic had modest effects on performance.

Research limitations/implications

In the future, other indices should be considered to gain a more comprehensive view. This is a quantitative study based on financial statements data that neglects other important economic and social factors.

Practical implications

Public policies could use this study for better interventions to support the sector. In addition, internal management can compare their company's performance with the industry average to identify possible improvements.

Social implications

The research analyses an economic field that employs a large number of people, especially when considering the construction and real estate services covered by this analysis.

Originality/value

The study contributes to the literature by providing a quantitative analysis of industry dynamics, with comparative information that can be deduced from financial statements over the years.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 11
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 4 March 2024

Yongjiang Xue, Wei Wang and Qingzeng Song

The primary objective of this study is to tackle the enduring challenge of preserving feature integrity during the manipulation of geometric data in computer graphics. Our work…

Abstract

Purpose

The primary objective of this study is to tackle the enduring challenge of preserving feature integrity during the manipulation of geometric data in computer graphics. Our work aims to introduce and validate a variational sparse diffusion model that enhances the capability to maintain the definition of sharp features within meshes throughout complex processing tasks such as segmentation and repair.

Design/methodology/approach

We developed a variational sparse diffusion model that integrates a high-order L1 regularization framework with Dirichlet boundary constraints, specifically designed to preserve edge definition. This model employs an innovative vertex updating strategy that optimizes the quality of mesh repairs. We leverage the augmented Lagrangian method to address the computational challenges inherent in this approach, enabling effective management of the trade-off between diffusion strength and feature preservation. Our methodology involves a detailed analysis of segmentation and repair processes, focusing on maintaining the acuity of features on triangulated surfaces.

Findings

Our findings indicate that the proposed variational sparse diffusion model significantly outperforms traditional smooth diffusion methods in preserving sharp features during mesh processing. The model ensures the delineation of clear boundaries in mesh segmentation and achieves high-fidelity restoration of deteriorated meshes in repair tasks. The innovative vertex updating strategy within the model contributes to enhanced mesh quality post-repair. Empirical evaluations demonstrate that our approach maintains the integrity of original, sharp features more effectively, especially in complex geometries with intricate detail.

Originality/value

The originality of this research lies in the novel application of a high-order L1 regularization framework to the field of mesh processing, a method not conventionally applied in this context. The value of our work is in providing a robust solution to the problem of feature degradation during the mesh manipulation process. Our model’s unique vertex updating strategy and the use of the augmented Lagrangian method for optimization are distinctive contributions that enhance the state-of-the-art in geometry processing. The empirical success of our model in preserving features during mesh segmentation and repair presents an advancement in computer graphics, offering practical benefits to both academic research and industry applications.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 595