Search results

1 – 10 of 408
Open Access
Article
Publication date: 20 March 2023

Anirut Kantasa-ard, Tarik Chargui, Abdelghani Bekrar, Abdessamad AitElCadi and Yves Sallez

This paper proposes an approach to solve the vehicle routing problem with simultaneous pickup and delivery (VRPSPD) in the context of the Physical Internet (PI) supply chain. The…

Abstract

Purpose

This paper proposes an approach to solve the vehicle routing problem with simultaneous pickup and delivery (VRPSPD) in the context of the Physical Internet (PI) supply chain. The main objective is to minimize the total distribution costs (transportation cost and holding cost) to supply retailers from PI hubs.

Design/methodology/approach

Mixed integer programming (MIP) is proposed to solve the problem in smaller instances. A random local search (RLS) algorithm and a simulated annealing (SA) metaheuristic are proposed to solve larger instances of the problem.

Findings

The results show that SA provides the best solution in terms of total distribution cost and provides a good result regarding holding cost and transportation cost compared to other heuristic methods. Moreover, in terms of total carbon emissions, the PI concept proposed a better solution than the classical supply chain.

Research limitations/implications

The sustainability of the route construction applied to the PI is validated through carbon emissions.

Practical implications

This approach also relates to the main objectives of transportation in the PI context: reduce empty trips and share transportation resources between PI-hubs and retailers. The proposed approaches are then validated through a case study of agricultural products in Thailand.

Social implications

This approach is also relevant with the reduction of driving hours on the road because of share transportation results and shorter distance than the classical route planning.

Originality/value

This paper addresses the VRPSPD problem in the PI context, which is based on sharing transportation and storage resources while considering sustainability.

Details

Journal of International Logistics and Trade, vol. 21 no. 3
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 17 November 2021

Leila Hashemi, Armin Mahmoodi, Milad Jasemi, Richard C. Millar and Jeremy Laliberté

This study aims to investigate a locating-routing-allocating problems and the supply chain, including factories distributor candidate locations and retailers. The purpose of this…

1145

Abstract

Purpose

This study aims to investigate a locating-routing-allocating problems and the supply chain, including factories distributor candidate locations and retailers. The purpose of this paper is to minimize system costs and delivery time to retailers so that routing is done and the location of the distributors is located.

Design/methodology/approach

The problem gets closer to reality by adding some special conditions and constraints. Retail service start times have hard and soft time windows, and each customer has a demand for simultaneous delivery and pickups. System costs include the cost of transportation, non-compliance with the soft time window, construction of a distributor, purchase or rental of a vehicle and production costs. The conceptual model of the problem is first defined and modeled and then solved in small dimensions by general algebraic modeling system (GAMS) software and non-dominated sorting genetic algorithm II (NSGAII) and multiple objective particle swarm optimization (MOPSO) algorithms.

Findings

According to the solution of the mathematical model, the average error of the two proposed algorithms in comparison with the exact solution is less than 0.7%. Also, the algorithms’ performance in terms of deviation from the GAMS exact solution, is quite acceptable and for the largest problem (N = 100) is 0.4%. Accordingly, it is concluded that NSGAII is superior to MOSPSO.

Research limitations/implications

In this study, since the model is bi-objective, the priorities of decision makers in choosing the optimal solution have not been considered and each of the objective functions has been given equal importance according to the weighting methods. Also, the model has not been compared and analyzed in deterministic and robust modes. This is because all variables, except the one that represents the uncertainty of traffic modes, are deterministic and the random nature of the demand in each graph is not considered.

Practical implications

The results of the proposed model are valuable for any group of decision makers who care optimizing the production pattern at any level. The use of a heterogeneous fleet of delivery vehicles and application of stochastic optimization methods in defining the time windows, show how effective the distribution networks are in reducing operating costs.

Originality/value

This study fills the gaps in the relationship between location and routing decisions in a practical way, considering the real constraints of a distribution network, based on a multi-objective model in a three-echelon supply chain. The model is able to optimize the uncertainty in the performance of vehicles to select the refueling strategy or different traffic situations and bring it closer to the state of certainty. Moreover, two modified algorithms of NSGA-II and multiple objective particle swarm optimization (MOPSO) are provided to solve the model while the results are compared with the exact general algebraic modeling system (GAMS) method for the small- and medium-sized problems.

Details

Smart and Resilient Transportation, vol. 3 no. 3
Type: Research Article
ISSN: 2632-0487

Keywords

Content available
Article
Publication date: 28 January 2020

Christos Papaleonidas, Dimitrios V. Lyridis, Alexios Papakostas and Dimitris Antonis Konstantinidis

The purpose of this paper is to improve the tactical planning of the stakeholders of the midstream liquefied natural gas (LNG) supply chain, using an optimisation approach. The…

1304

Abstract

Purpose

The purpose of this paper is to improve the tactical planning of the stakeholders of the midstream liquefied natural gas (LNG) supply chain, using an optimisation approach. The results can contribute to enhance the proactivity on significant investment decisions.

Design/methodology/approach

A decision support tool (DST) is proposed to minimise the operational cost of a fleet of vessels. Mixed integer linear programming (MILP) used to perform contract assignment combined with a genetic algorithm solution are the foundations of the DST. The aforementioned methods present a formulation of the maritime transportation problem from the scope of tramp shipping companies.

Findings

The validation of the DST through a realistic case study illustrates its potential in generating quantitative data about the cost of the midstream LNG supply chain and the annual operations schedule for a fleet of LNG vessels.

Research limitations/implications

The LNG transportation scenarios included assumptions, which were required for resource reasons, such as omission of stochasticity. Notwithstanding the assumptions made, it is to the authors’ belief that the paper meets its objectives as described above.

Practical implications

Potential practitioners may exploit the results to make informed decisions on the operation of LNG vessels, charter rate quotes and/or redeployment of existing fleet.

Originality/value

The research has a novel approach as it combines the creation of practical management tool, with a comprehensive mathematical modelling, for the midstream LNG supply chain. Quantifying future fleet costs is an alternative approach, which may improve the planning procedure of a tramp shipping company.

Details

Maritime Business Review, vol. 5 no. 1
Type: Research Article
ISSN: 2397-3757

Keywords

Open Access
Article
Publication date: 30 September 2021

Thakshila Samarakkody and Heshan Alagalla

This research is designed to optimize the business process of a green tea dealer, who is a key supply chain partner of the Sri Lankan tea industry. The most appropriate trips for…

1322

Abstract

Purpose

This research is designed to optimize the business process of a green tea dealer, who is a key supply chain partner of the Sri Lankan tea industry. The most appropriate trips for each vehicle in multiple trip routing systems are identified to minimize the total cost by considering the traveling distance.

Design/methodology/approach

The study has followed the concepts in vehicle routing problems and mixed-integer programming mathematical techniques. The model was coded with the Python programming language and was solved with the CPLEX Optimization solver version 12.10. In total, 20 data instances were used from the subjected green tea dealer for the validation of the model.

Findings

The result of the numerical experiment showed the ability to access supply over the full capacity of the available fleet. The model achieved optimal traveling distance for all the instances, with the capability of saving 17% of daily transpiration cost as an average.

Research limitations/implications

This study contributes to the three index mixed-integer programing model formulation through in-depth analysis and combination of several extensions of vehicle routing problem.

Practical implications

This study contributes to the three index mixed-integer programming model formulation through in-depth analysis and combination of several extensions of the vehicle routing problem.

Social implications

The proposed model provides a cost-effective optimal routing plan to the green tea dealer, which satisfies all the practical situations by following the multiple trip vehicle routing problems. Licensee green tea dealer is able to have an optimal fleet size, which is always less than the original fleet size. Elimination of a vehicle from the fleet has the capability of reducing the workforce. Hence, this provides managerial implication for the optimal fleet sizing and route designing.

Originality/value

Developing an optimization model for a tea dealer in Sri Lankan context is important, as this a complex real world case which has a significant importance in export economy of the country and which has not been analyzed or optimized through any previous research effort.

Details

Modern Supply Chain Research and Applications, vol. 3 no. 4
Type: Research Article
ISSN: 2631-3871

Keywords

Content available
Article
Publication date: 10 December 2020

Dave C. Longhorn and John Dale Stobbs

This paper aims to propose two solution approaches to determine the number of ground transport vehicles that are required to ensure the on-time delivery of military equipment…

Abstract

Purpose

This paper aims to propose two solution approaches to determine the number of ground transport vehicles that are required to ensure the on-time delivery of military equipment between origin and destination node pairs in some geographic region, which is an important logistics problem at the US Transportation Command.

Design/methodology/approach

The author uses a mathematical program and a traditional heuristic to provide optimal and near-optimal solutions, respectively. The author also compares the approaches for random, small-scale problems to assess the quality and computational efficiency of the heuristic solution, and also uses the heuristic to solve a notional, large-scale problem typical of real problems.

Findings

This work helps analysts identify how many ground transport vehicles are needed to meet cargo delivery requirements in any military theater of operation.

Research limitations/implications

This research assumes all problem data is deterministic, so it does not capture variations in requirements or transit times between nodes.

Practical implications

This work provides prescriptive details to military analysts and decision-makers in a timely manner. Prior to this work, insights for this type of problem were generated using time-consuming simulation taking about a week and often involving trial-and-error.

Originality/value

This research provides new methods to solve an important logistics problem. The heuristic presented in this paper was recently used to provide operational insights about ground vehicle requirements to support a geographic combatant command and to inform decisions for railcar recapitalization within the US Army.

Details

Journal of Defense Analytics and Logistics, vol. 5 no. 1
Type: Research Article
ISSN: 2399-6439

Keywords

Open Access
Article
Publication date: 25 March 2024

Hossein Shakibaei, Seyyed Amirmohammad Moosavi, Amir Aghsami and Masoud Rabbani

Throughout human history, the occurrence of disasters has been inevitable, leading to significant human, financial and emotional consequences. Therefore, it is crucial to…

Abstract

Purpose

Throughout human history, the occurrence of disasters has been inevitable, leading to significant human, financial and emotional consequences. Therefore, it is crucial to establish a well-designed plan to efficiently manage such situations when disaster strikes. The purpose of this study is to develop a comprehensive program that encompasses multiple aspects of postdisaster relief.

Design/methodology/approach

A multiobjective model has been developed for postdisaster relief, with the aim of minimizing social dissatisfaction, economic costs and environmental damage. The model has been solved using exact methods for different scenarios. The objective is to achieve the most optimal outcomes in the context of postdisaster relief operations.

Findings

A real case study of an earthquake in Haiti has been conducted. The acquired results and subsequent management analysis have effectively assessed the logic of the model. As a result, the model’s performance has been validated and deemed reliable based on the findings and insights obtained.

Originality/value

Ultimately, the model provides the optimal quantities of each product to be shipped and determines the appropriate mode of transportation. Additionally, the application of the epsilon constraint method results in a set of Pareto optimal solutions. Through a comprehensive examination of the presented solutions, valuable insights and analyses can be obtained, contributing to a better understanding of the model’s effectiveness.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 30 September 2022

Kwame Owusu Kwateng, Benjamin Fokuoh and Francis Kamewor Tetteh

For the supply chain to be responsive in the age of globalization, the firm needs to adopt strategies to enable them to meet the changing market needs. Thus, it is essential to…

3737

Abstract

Purpose

For the supply chain to be responsive in the age of globalization, the firm needs to adopt strategies to enable them to meet the changing market needs. Thus, it is essential to adopt automatic replenishment programmes such as vendor-managed inventory (VMI). This study sought to examine the relationship between VMI and operational performance (OP) and the moderation roles of leadership and digitization in the mining sector.

Design/methodology/approach

A quantitative approach was used, including primary data collected from industry players in the mining sector in Ghana. A total of 97 industry players were included in the study. Data gathered was analysed using SPSS and LISREL (8.5).

Findings

The results indicate that VMI significantly affects OP. However, both digitization and leadership failed to moderate the relationship between VMI and OP.

Practical implications

The study offers mining companies an understanding of VMI applications in their industry. The knowledge will stimulate and improve inventory management practices in the mining industry.

Originality/value

This study is among the first few attempts to understand VMI in the mining industry, especially in the Sub-Saharan Africa context. It presents a detailed understanding of VMI and opportunities for future research.

Details

Modern Supply Chain Research and Applications, vol. 4 no. 3
Type: Research Article
ISSN: 2631-3871

Keywords

Content available
Article
Publication date: 12 November 2020

Daniel Reich, Ira Lewis, Austin J. Winkler, Benjamin Leichty and Lauren B. Bobzin

The purpose of this paper is to help optimize sustainment logistics for US Army brigade combat teams, which may face challenges in transporting their assigned assets.

Abstract

Purpose

The purpose of this paper is to help optimize sustainment logistics for US Army brigade combat teams, which may face challenges in transporting their assigned assets.

Design/methodology/approach

This paper develops a simulation framework with an integrated integer programming optimization model. The integer-programming model optimizes sustainment outcomes of supported battalions on a daily basis, whereas the simulation framework analyzes risk associated with shortfalls that may arise over the entire duration of a conflict.

Findings

This work presents a scenario reflecting the steady resupply of an infantry brigade combat team during combat operations and presents an in-depth risk analysis for possible fleet compositions.

Originality/value

The risk curves obtained allow decision-makers and commanders to optimize vehicle fleet design in advance of a conflict.

Details

Journal of Defense Analytics and Logistics, vol. 4 no. 2
Type: Research Article
ISSN: 2399-6439

Keywords

Content available
Article
Publication date: 26 June 2019

Dave C. Longhorn and Joshua R. Muckensturm

This paper aims to introduce a new mixed integer programming formulation and associated heuristic algorithm to solve the Military Nodal Capacity Problem, which is a type of supply…

1053

Abstract

Purpose

This paper aims to introduce a new mixed integer programming formulation and associated heuristic algorithm to solve the Military Nodal Capacity Problem, which is a type of supply chain network design problem that involves determining the amount of capacity expansion required at theater nodes to ensure the on-time delivery of military cargo.

Design/methodology/approach

Supply chain network design, mixed integer programs, heuristics and regression are used in this paper.

Findings

This work helps analysts at the United States Transportation Command identify what levels of throughput capacities, such as daily processing rates of trucks and railcars, are needed at theater distribution nodes to meet warfighter cargo delivery requirements.

Research limitations/implications

This research assumes all problem data are deterministic, and so it does not capture the variations in cargo requirements, transit times or asset payloads.

Practical implications

This work gives military analysts and decision makers prescriptive details about nodal capacities needed to meet demands. Prior to this work, insights for this type of problem were generated using multiple time-consuming simulations often involving trial-and-error to explore the trade space.

Originality/value

This work merges research of supply chain network design with military theater distribution problems to prescribe the optimal, or near-optimal, throughput capacities at theater nodes. The capacity levels must meet delivery requirements while adhering to constraints on the proportion of cargo transported by mode and the expected payloads for assets.

Details

Journal of Defense Analytics and Logistics, vol. 3 no. 2
Type: Research Article
ISSN: 2399-6439

Keywords

Content available
Article
Publication date: 17 July 2007

R. Glenn Richey Jr

292

Abstract

Details

International Journal of Physical Distribution & Logistics Management, vol. 37 no. 6
Type: Research Article
ISSN: 0960-0035

1 – 10 of 408