Search results

1 – 10 of 94
Article
Publication date: 12 June 2017

Harkaitz Garcia, María Victoria Biezma, Jesús Cuadrado and Eduardo Rojí

The purpose of this paper is to analyze a new structural design applied in industrial frames using two type of steels (S275 and fire resistant (FR)) with different mechanical…

Abstract

Purpose

The purpose of this paper is to analyze a new structural design applied in industrial frames using two type of steels (S275 and fire resistant (FR)) with different mechanical resistance against fire. To do it, the authors have taken into account variables such as intrinsic metallic design, span length, intumescent paint thickness, and fire time exposure, which offers information about new scenarios of design in industry.

Design/methodology/approach

The key methodology followed has taken into account a modeling program that uses the following variables: 25 and 35 m of span, 45 and 60 fire exposure times, and seven different intumescent paint thickness. An optimum structural design has been evaluated by discretization of each scenario with the particular type of steel, S275 and FR. The obtained approach could be a good guideline for future designs.

Findings

The results and analysis have shown a very good and valid idea of a new structural typology using optimum intumescent paint thickness into the final design of the industrial frame considering that it has two different types of steel. It is in realty a handicap since usually mechanical engineers employ structural steel without paying attention to this new feature.

Practical implications

Cheaper structural designs could be obtained using the two different types of steel considering the proper positioning into the full building.

Originality/value

The validity of design of two types of steel plus intumescent paint in building construction has been shown, and this study will encourage designers to use it, in particular in buildings with high fire risk.

Details

International Journal of Structural Integrity, vol. 8 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 April 1982

Tony Smith

The growth in the development of flame resistant and intumescent paints has been brought about by successive legislation and by the increasing awareness in recent years of the…

Abstract

The growth in the development of flame resistant and intumescent paints has been brought about by successive legislation and by the increasing awareness in recent years of the problem that paints can cause. The importance of developing these paints was highlighted during the Second World War when the Navy found that steel ships were no guarantee against fire loss. This was due to the accumulation of multiple layers of paint material providing material that was sufficiently flammable to spread fire from one sealed compartment to another by heat transmitted through the bulkhead. Fire remains an ever‐present hazard on ships and consequently it becomes commonsense to paint the internal structure and fitments wherever possible with a paint that will tend to resist flames. In this article we examine the various factors involved and the pigments that will enhance this property in any paint specification.

Details

Pigment & Resin Technology, vol. 11 no. 4
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 8 April 2022

Matt Ghiji, Paul Joseph and Maurice Guerrieri

In the present article, the authors have conducted a review on some of the recent developments given in the literature pertaining to the passive protection of concrete structures…

327

Abstract

Purpose

In the present article, the authors have conducted a review on some of the recent developments given in the literature pertaining to the passive protection of concrete structures using intumescent coatings. Here, the main thrust is placed on the spalling phenomenon of concrete elements when exposed to elevated temperatures and fires.

Design/methodology/approach

In this context, it has been long established that prolonged thermal insult on concrete members will lead to egress of water, both physically bound as well as those present as water of hydration within the concrete matrix, in the form of steam through microchannels and associated pathways of least resistance, often resulting in the flaking of the surface of the structure. The latter process can ultimately lead to the exposure of the ferrous-based reenforcement elements, for instance, to higher temperatures, thus inducing melting. This, in turn, can result in substantial loss of strength and load-bearing capacity of the structural element that is already undergoing disintegration of its base matrix owing to heat/fire. Even though spalling of concrete structures has long been recognized as a serious problem that can often lead to catastrophic failure of infrastructures, such as buildings, bridges and tunnels, the utility of intumescent coating as a mitigation strategy is relatively new and has not been explored to its fullest possible extent. Therefore, in the latter parts of the review, the authors have endeavored to discuss the different types of intumescent coatings, their modes of actions and, in particular, their wider applicability in terms of protecting concrete elements from detrimental effects of severe or explosive spalling.

Findings

Given that spalling of concrete components is still a very serious issue that can result in loss of lives and destruction of critical infrastructures, there is an urgent need to formulate better mitigating strategies, through novel means and methods. The use of the intumescent coating in this context appears to be a promising way forward but is one that seems to be little explored so far. Therefore, a more systematic investigation is highly warranted in this area, especially, as the authors envisage a greater activity in the building and commissioning of more infrastructures worldwide incommensurate with augmented economic activities during the post-COVID recovery period.

Originality/value

The authors have conducted a review on some of the recent developments given in the literature pertaining to the passive protection of concrete structures using intumescent coatings. The authors have also included the results from some recent tests carried out at the facilities using a newly commissioned state-of-the-art furnace.

Details

Journal of Structural Fire Engineering, vol. 14 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 December 1998

Philip Sargent

Considers the problems faced by the paints used in multi‐occupancy dwellings in the event of fire. Examines the importance of adhesion properties of paint films. Gives details of…

326

Abstract

Considers the problems faced by the paints used in multi‐occupancy dwellings in the event of fire. Examines the importance of adhesion properties of paint films. Gives details of a range of flame retardant coatings manufactured by Bollom Fire Protection.

Details

Pigment & Resin Technology, vol. 27 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 May 1984

Tony Smith

There was a time when these compositions could command only a limited interest, but the range of applications is now so wide, that demand has expanded as an ever increasing…

Abstract

There was a time when these compositions could command only a limited interest, but the range of applications is now so wide, that demand has expanded as an ever increasing clientele is using them.

Details

Pigment & Resin Technology, vol. 13 no. 5
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 12 December 2019

Fariz Aswan Ahmad Zakwan, Ruqayyah Ismail, Renga Rao Krishnamoorthy and Azmi Ibrahim

This paper aims to investigate the predicted temperature behaviour of the protected cellular steel beam (CSB) with circular web openings at elevated temperature through finite…

Abstract

Purpose

This paper aims to investigate the predicted temperature behaviour of the protected cellular steel beam (CSB) with circular web openings at elevated temperature through finite element simulation.

Design/methodology/approach

Temperature development along the CSB were analysed and used for parametric investigation. In addition, this research paper investigates the novelty application of various intumescent coating thicknesses covering the whole CSB to cut down the temperature development along the beam section.

Findings

From the simulation outcomes, it shows that intumescent coating has a significant effect in reducing the temperature development along the CSB section. Thicker intumescent coating contributes to a higher temperature drop at the bottom tee section than the upper tee section.

Originality/value

The use of structural CSB has gained popularity among engineers and architects. This type of beam allows serviceability ducts and pipes to pass through the main steel web section under the flooring system, thus providing larger headroom for designers. Nevertheless, in any structural steel building, it is highly risky for CSB to be exposed to fire hazard if it were triggered accidentally. To mitigate and reduce fire exposure risk which might compromise the strength and stiffness of CSB, a passive fire protection is proposed to minimise the risk. One of the common passive fire protection materials used for steel beam section is intumescent coating. Intumescent coating is by far the cheapest solution to protect CSB as compared to other passive fire protection system. Intumescent coating can absorb some portion of heat exposure which subsequently translates a lower temperature development along the CSB section.

Details

Journal of Structural Fire Engineering, vol. 11 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 6 February 2024

Andrea Lucherini and Donatella de Silva

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings…

Abstract

Purpose

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings are particularly complex materials to be modelled and predicted, which can be extremely useful especially for performance-based fire safety designs. In addition, many parameters influence their performance, and this challenges the definition and quantification of their material properties. Several approaches and models of various complexities are proposed in the literature, and they are reviewed and analysed in a critical literature review.

Design/methodology/approach

Analytical, finite-difference and finite-element methods for modelling intumescent coatings are compared, followed by the definition and quantification of the main physical, thermal, and optical properties of intumescent coatings: swelled thickness, thermal conductivity and resistance, density, specific heat capacity, and emissivity/absorptivity.

Findings

The study highlights the scarce consideration of key influencing factors on the material properties, and the tendency to simplify the problem into effective thermo-physical properties, such as effective thermal conductivity. As a conclusion, the literature review underlines the lack of homogenisation of modelling approaches and material properties, as well as the need for a universal modelling method that can generally simulate the performance of intumescent coatings, combine the large amount of published experimental data, and reliably produce fire-safe performance-based designs.

Research limitations/implications

Due to their limited applicability, high complexity and little comparability, the presented literature review does not focus on analysing and comparing different multi-component models, constituted of many model-specific input parameters. On the contrary, the presented literature review compares various approaches, models and thermo-physical properties which primarily focusses on solving the heat transfer problem through swelling intumescent systems.

Originality/value

The presented literature review analyses and discusses the various modelling approaches to describe and predict the behaviour of swelling intumescent coatings as fire protection for structural materials. Due to the vast variety of available commercial products and potential testing conditions, these data are rarely compared and combined to achieve an overall understanding on the response of intumescent coatings as fire protection measure. The study highlights the lack of information and homogenisation of various modelling approaches, and it underlines the research needs about several aspects related to the intumescent coating behaviour modelling, also providing some useful suggestions for future studies.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 September 1988

An intumescent flame retardant paint, Flamebloc, has been introduced by Granyte Surface Coatings plc. Systems featuring the special purpose coating on a variety of substrates have…

Abstract

An intumescent flame retardant paint, Flamebloc, has been introduced by Granyte Surface Coatings plc. Systems featuring the special purpose coating on a variety of substrates have been performance tested at the Warrington Fire Research Centre and were found to meet the requirements of a Class O fire rated surface, as defined in the latest Building Regulations.

Details

Pigment & Resin Technology, vol. 17 no. 9
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 5 July 2011

R. Otáhal, D. Veselý, J. Násadová, V. Zíma, P. Němec and P. Kalenda

The purpose of this paper is to study properties of intumescent coatings based on a silicone‐epoxy hybrid resin (with an aminosilane as hardener). In the first part of this study…

Abstract

Purpose

The purpose of this paper is to study properties of intumescent coatings based on a silicone‐epoxy hybrid resin (with an aminosilane as hardener). In the first part of this study, fire‐resistance behaviour of the intumescent coating based on silicone‐epoxy resin containing intumescent additives is evaluated. The second part assesses the effect of mineral fibres on fire‐resistant properties of intumescent coatings based on the silicone‐epoxy resin.

Design/methodology/approach

Thermal degradation and char formation of coatings were investigated by Thermogravimetric analyses, X‐ray diffraction and X‐ray fluorescence and infrared spectroscopy (FTIR). The salt spray corrosion test was applied to study the resistance of intumescent coatings. Anticorrosion and fire‐resistant properties after one, three and seven days of exposure were evaluated.

Findings

It was shown that a silicone‐epoxy hybrid resin is suitable for applications in the field of intumescent coatings. Intumescent coatings based on this resin form a thermally stable thin ceramic‐like layer, which improves the thermal insulation properties of the char. Mineral fibres reinforced the char structure and thus improved fire‐resistant properties of intumescent coating before as well as after the salt spray test. Mineral fibres also improved anticorrosion properties.

Research limitations/implications

This paper discusses only the effect of mineral fibres on properties of intumescent coatings.

Originality/value

A silicone‐epoxy hybrid resin has not previously been used in intumescent coatings. This type of intumescent coating can be used as an effective passive fire protection system for steel constructions.

Details

Pigment & Resin Technology, vol. 40 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 October 1988

The new improved intumescent fire retardant paint, TAF M112, from Macpherson Pearl Paints has just received Class 1 Spread of Flame approval from the Warrington Fire Research…

Abstract

The new improved intumescent fire retardant paint, TAF M112, from Macpherson Pearl Paints has just received Class 1 Spread of Flame approval from the Warrington Fire Research Centre, after testing in accordance with BS 476 part 7. The new paint is said to be effective in stopping the spread of fire across any surface on which it is painted. It has improved intumescence and flow‐out properties.

Details

Pigment & Resin Technology, vol. 17 no. 10
Type: Research Article
ISSN: 0369-9420

1 – 10 of 94