Search results

1 – 10 of 173
Article
Publication date: 5 July 2011

R. Otáhal, D. Veselý, J. Násadová, V. Zíma, P. Němec and P. Kalenda

The purpose of this paper is to study properties of intumescent coatings based on a silicone‐epoxy hybrid resin (with an aminosilane as hardener). In the first part of this study…

Abstract

Purpose

The purpose of this paper is to study properties of intumescent coatings based on a silicone‐epoxy hybrid resin (with an aminosilane as hardener). In the first part of this study, fire‐resistance behaviour of the intumescent coating based on silicone‐epoxy resin containing intumescent additives is evaluated. The second part assesses the effect of mineral fibres on fire‐resistant properties of intumescent coatings based on the silicone‐epoxy resin.

Design/methodology/approach

Thermal degradation and char formation of coatings were investigated by Thermogravimetric analyses, X‐ray diffraction and X‐ray fluorescence and infrared spectroscopy (FTIR). The salt spray corrosion test was applied to study the resistance of intumescent coatings. Anticorrosion and fire‐resistant properties after one, three and seven days of exposure were evaluated.

Findings

It was shown that a silicone‐epoxy hybrid resin is suitable for applications in the field of intumescent coatings. Intumescent coatings based on this resin form a thermally stable thin ceramic‐like layer, which improves the thermal insulation properties of the char. Mineral fibres reinforced the char structure and thus improved fire‐resistant properties of intumescent coating before as well as after the salt spray test. Mineral fibres also improved anticorrosion properties.

Research limitations/implications

This paper discusses only the effect of mineral fibres on properties of intumescent coatings.

Originality/value

A silicone‐epoxy hybrid resin has not previously been used in intumescent coatings. This type of intumescent coating can be used as an effective passive fire protection system for steel constructions.

Details

Pigment & Resin Technology, vol. 40 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 February 2024

Andrea Lucherini and Donatella de Silva

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings…

Abstract

Purpose

Intumescent coatings are nowadays a dominant passive system used to protect structural materials in case of fire. Due to their reactive swelling behaviour, intumescent coatings are particularly complex materials to be modelled and predicted, which can be extremely useful especially for performance-based fire safety designs. In addition, many parameters influence their performance, and this challenges the definition and quantification of their material properties. Several approaches and models of various complexities are proposed in the literature, and they are reviewed and analysed in a critical literature review.

Design/methodology/approach

Analytical, finite-difference and finite-element methods for modelling intumescent coatings are compared, followed by the definition and quantification of the main physical, thermal, and optical properties of intumescent coatings: swelled thickness, thermal conductivity and resistance, density, specific heat capacity, and emissivity/absorptivity.

Findings

The study highlights the scarce consideration of key influencing factors on the material properties, and the tendency to simplify the problem into effective thermo-physical properties, such as effective thermal conductivity. As a conclusion, the literature review underlines the lack of homogenisation of modelling approaches and material properties, as well as the need for a universal modelling method that can generally simulate the performance of intumescent coatings, combine the large amount of published experimental data, and reliably produce fire-safe performance-based designs.

Research limitations/implications

Due to their limited applicability, high complexity and little comparability, the presented literature review does not focus on analysing and comparing different multi-component models, constituted of many model-specific input parameters. On the contrary, the presented literature review compares various approaches, models and thermo-physical properties which primarily focusses on solving the heat transfer problem through swelling intumescent systems.

Originality/value

The presented literature review analyses and discusses the various modelling approaches to describe and predict the behaviour of swelling intumescent coatings as fire protection for structural materials. Due to the vast variety of available commercial products and potential testing conditions, these data are rarely compared and combined to achieve an overall understanding on the response of intumescent coatings as fire protection measure. The study highlights the lack of information and homogenisation of various modelling approaches, and it underlines the research needs about several aspects related to the intumescent coating behaviour modelling, also providing some useful suggestions for future studies.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 7 March 2016

Zhishi Li, Huajin Wang, Sheng Zhang, Wei Zhao, Qinghuai Jiang, Mingqiang Wang, Jun Zhao and Wei Lu

– This paper aims to discuss how acrylic resin influences the smoke generation of intumescent flame retardant coatings.

Abstract

Purpose

This paper aims to discuss how acrylic resin influences the smoke generation of intumescent flame retardant coatings.

Design/methodology/approach

Thermal decomposition kinetics is used in this study to simulate the burning process. The thermal decomposition of acrylic resin can be identified in the intumescent coatings through the multi-peak fitting of derivative thermogravimetric (DTG) curves. The dormant influence of acrylic resin, combined with the smoke density, is calculated.

Findings

Multiple peaks fitting method of DTG curves helps estimate the decomposition process of acrylic resin in flame retardant coating. Combining DTG data with the smoking curve, smoking generation of acrylic resin during the combustion could be evaluated. The decomposition conversion rate of acrylic resin is 21.13 per cent. Acrylic resin generates 34.64 per cent of the total amount of smoke produced during the combustion of intumescent flame retardant coatings.

Research limitations/implications

All the other intumescent flame retardant coating systems could be studied using the same approach as that used in this work to achieve an improved understanding of the smoke generation process during combustion.

Practical implications

The method developed here provided a simple and practical solution to analyse the decomposition and smoking generation of acrylic resin in the coating mixtures. It also can be used to analyse any thermal decomposition process of any mixed compounds.

Originality/value

The analysis method to evaluate resin’s smoking generation of coating’s total generation is novel, and it could be applied in all kinds of coatings and mixtures to estimate the smoking generation of one composition.

Details

Pigment & Resin Technology, vol. 45 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 April 2022

Matt Ghiji, Paul Joseph and Maurice Guerrieri

In the present article, the authors have conducted a review on some of the recent developments given in the literature pertaining to the passive protection of concrete structures…

327

Abstract

Purpose

In the present article, the authors have conducted a review on some of the recent developments given in the literature pertaining to the passive protection of concrete structures using intumescent coatings. Here, the main thrust is placed on the spalling phenomenon of concrete elements when exposed to elevated temperatures and fires.

Design/methodology/approach

In this context, it has been long established that prolonged thermal insult on concrete members will lead to egress of water, both physically bound as well as those present as water of hydration within the concrete matrix, in the form of steam through microchannels and associated pathways of least resistance, often resulting in the flaking of the surface of the structure. The latter process can ultimately lead to the exposure of the ferrous-based reenforcement elements, for instance, to higher temperatures, thus inducing melting. This, in turn, can result in substantial loss of strength and load-bearing capacity of the structural element that is already undergoing disintegration of its base matrix owing to heat/fire. Even though spalling of concrete structures has long been recognized as a serious problem that can often lead to catastrophic failure of infrastructures, such as buildings, bridges and tunnels, the utility of intumescent coating as a mitigation strategy is relatively new and has not been explored to its fullest possible extent. Therefore, in the latter parts of the review, the authors have endeavored to discuss the different types of intumescent coatings, their modes of actions and, in particular, their wider applicability in terms of protecting concrete elements from detrimental effects of severe or explosive spalling.

Findings

Given that spalling of concrete components is still a very serious issue that can result in loss of lives and destruction of critical infrastructures, there is an urgent need to formulate better mitigating strategies, through novel means and methods. The use of the intumescent coating in this context appears to be a promising way forward but is one that seems to be little explored so far. Therefore, a more systematic investigation is highly warranted in this area, especially, as the authors envisage a greater activity in the building and commissioning of more infrastructures worldwide incommensurate with augmented economic activities during the post-COVID recovery period.

Originality/value

The authors have conducted a review on some of the recent developments given in the literature pertaining to the passive protection of concrete structures using intumescent coatings. The authors have also included the results from some recent tests carried out at the facilities using a newly commissioned state-of-the-art furnace.

Details

Journal of Structural Fire Engineering, vol. 14 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 16 August 2019

Mai Häßler, Dustin Häßler, Sascha Hothan and Simone Krüger

The purpose of this paper is to investigate the performance of intumescent coating on tension rod systems and their components. Steel tension rod systems consist of tension rods…

Abstract

Purpose

The purpose of this paper is to investigate the performance of intumescent coating on tension rod systems and their components. Steel tension rod systems consist of tension rods, fork end connectors and associated intersection or gusset plates. In case of fire, beside the tension rods themselves, the connection parts require appropriate fire protection. Intumescent fire protection coatings prevent a rapid heating of the steel and help secure the structural load-carrying capacity. Because the connection components of tension rod systems feature surface curvature and a complex geometry, high demand is placed on the intumescence and thermal protection performance of the coatings.

Design/methodology/approach

In this paper, experimental studies were carried out for steel tension rod systems with intumescent coating. The examined aspects include the foaming and cracking behaviour, the influence of different dry film thicknesses, the heating rate of the steel connecting parts in comparison to the tension rods, and the mounting orientation of the tension rods together with their fork end connectors.

Findings

The results show that a decrease in surface curvature and/or an increase in mass concentration of the steel components leads to a lower heating rate of the steel. Moreover, the performance of the intumescent coating on tension rod systems is influenced by the mounting orientation of the steel components.

Originality/value

The findings based on fire tests contribute to a better understanding of the intumescent coating performance on connection components of tension rod systems. This subject has not been extensively studied yet.

Details

Journal of Structural Fire Engineering, vol. 11 no. 1
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 12 December 2019

Fariz Aswan Ahmad Zakwan, Ruqayyah Ismail, Renga Rao Krishnamoorthy and Azmi Ibrahim

This paper aims to investigate the predicted temperature behaviour of the protected cellular steel beam (CSB) with circular web openings at elevated temperature through finite…

Abstract

Purpose

This paper aims to investigate the predicted temperature behaviour of the protected cellular steel beam (CSB) with circular web openings at elevated temperature through finite element simulation.

Design/methodology/approach

Temperature development along the CSB were analysed and used for parametric investigation. In addition, this research paper investigates the novelty application of various intumescent coating thicknesses covering the whole CSB to cut down the temperature development along the beam section.

Findings

From the simulation outcomes, it shows that intumescent coating has a significant effect in reducing the temperature development along the CSB section. Thicker intumescent coating contributes to a higher temperature drop at the bottom tee section than the upper tee section.

Originality/value

The use of structural CSB has gained popularity among engineers and architects. This type of beam allows serviceability ducts and pipes to pass through the main steel web section under the flooring system, thus providing larger headroom for designers. Nevertheless, in any structural steel building, it is highly risky for CSB to be exposed to fire hazard if it were triggered accidentally. To mitigate and reduce fire exposure risk which might compromise the strength and stiffness of CSB, a passive fire protection is proposed to minimise the risk. One of the common passive fire protection materials used for steel beam section is intumescent coating. Intumescent coating is by far the cheapest solution to protect CSB as compared to other passive fire protection system. Intumescent coating can absorb some portion of heat exposure which subsequently translates a lower temperature development along the CSB section.

Details

Journal of Structural Fire Engineering, vol. 11 no. 2
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 5 March 2018

K. Md Nasir, N.H. Ramli Sulong, M.R. Johan and A.M. Afifi

This study aims to discuss the modification and/or improvement of intumescent coating system by incorporating waterborne resin with an appropriate combination of flame-retardant…

Abstract

Purpose

This study aims to discuss the modification and/or improvement of intumescent coating system by incorporating waterborne resin with an appropriate combination of flame-retardant additives and four different fillers, namely, TiO2, Al(OH)3, Mg(OH)2 and CaCO3.

Design/methodology/approach

Coating mixtures are characterized using the Bunsen burner, thermogravimetric analysis, limiting oxygen index, scanning electron microscope, static immersion bath, Fourier transform infrared and adhesion tester.

Findings

Results show that the combination of coating with CaCO3 filler significantly improved fire protection performance because of its thick char layer and the equilibrium temperature being 264°C. Char layer showed a uniform dense foam structure on micrograph and this formulation had adhesion strength of 2.13 MPa, which indicates effectiveness of the interface adhesion on substrate. Conversely, the combination of coating with Al(OH)3 exhibited highest oxygen index of 35 per cent, which resulted in excellent flammability resistance.

Research limitations/implications

This paper discusses only the effect of mineral fillers on properties of intumescent coatings.

Practical implications

In the modern design of building infrastructure, fire safety is significant for the protection of human life and assets. The application of intumescent coating in buildings is currently practiced because of its effect on material flammability during a fire.

Originality/value

The analysis method to evaluate the performance of water-borne resin with different fillers is formulated, and it could be applied in all kinds of coatings and mixtures to be used as an effective fire protection system for steel constructions.

Details

Pigment & Resin Technology, vol. 47 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 June 2017

Harkaitz Garcia, María Victoria Biezma, Jesús Cuadrado and Eduardo Rojí

The purpose of this paper is to analyze a new structural design applied in industrial frames using two type of steels (S275 and fire resistant (FR)) with different mechanical…

Abstract

Purpose

The purpose of this paper is to analyze a new structural design applied in industrial frames using two type of steels (S275 and fire resistant (FR)) with different mechanical resistance against fire. To do it, the authors have taken into account variables such as intrinsic metallic design, span length, intumescent paint thickness, and fire time exposure, which offers information about new scenarios of design in industry.

Design/methodology/approach

The key methodology followed has taken into account a modeling program that uses the following variables: 25 and 35 m of span, 45 and 60 fire exposure times, and seven different intumescent paint thickness. An optimum structural design has been evaluated by discretization of each scenario with the particular type of steel, S275 and FR. The obtained approach could be a good guideline for future designs.

Findings

The results and analysis have shown a very good and valid idea of a new structural typology using optimum intumescent paint thickness into the final design of the industrial frame considering that it has two different types of steel. It is in realty a handicap since usually mechanical engineers employ structural steel without paying attention to this new feature.

Practical implications

Cheaper structural designs could be obtained using the two different types of steel considering the proper positioning into the full building.

Originality/value

The validity of design of two types of steel plus intumescent paint in building construction has been shown, and this study will encourage designers to use it, in particular in buildings with high fire risk.

Details

International Journal of Structural Integrity, vol. 8 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 6 March 2017

Warunee Wattanatanom, Sireerat Churuchinda and Pranut Potiyaraj

The purpose of this paper is to investigate the potential use of the layer-by-layer (LbL) assembly as an intumescent flame retardant for polyester, cotton and their blended…

Abstract

Purpose

The purpose of this paper is to investigate the potential use of the layer-by-layer (LbL) assembly as an intumescent flame retardant for polyester, cotton and their blended fabrics.

Design/methodology/approach

In this study, polyester (PET), cotton and their blends were applied with the flame retardant coating via the LbL assembly technique. The flame retardancy, melt dripping, thermal properties and morphology of coated polyester fabrics were then examined.

Findings

The scanning electron micrograph of uncoated and coated fabrics revealed that the LbL assembly coating on the fabric surface was successful. The assessment of the flame retardancy and thermal properties of the coated fabrics showed that the after-flame time and melt dripping during the vertical burning test decreased. The char residue at temperatures ranging from 450 to 800°C during thermogravimetric analysis was enhanced as compared with the uncoated fabric. Furthermore, the morphology of the char residual of coated fabrics was rougher and bulkier than the uncoated fabrics, suggesting the typical behavior of intumescence.

Social implications

The LbL technique generally uses much fewer chemicals, thus making this flame retardant finishing much more environmentally friendly. It is also expected that these fabrics will show better touch characteristics. These fabrics may be tested for their comfort compared to that of conventional coating to enable their use on an industrial scale.

Originality/value

This work demonstrated the ability to apply an effective intumescent coating on polyester, cotton and blend fabric. In order to maintain fabric handle property, the Lbl coating technique is also employed.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 17 June 2015

Peter Kraus, Martin Mensinger, Florian Tabeling and Peter Schaumann

In this paper, the research program “Optimized use of intumescent coating systems on steel members” is presented. The aim of the project is to quantify the influence of…

Abstract

In this paper, the research program “Optimized use of intumescent coating systems on steel members” is presented. The aim of the project is to quantify the influence of space-enclosing elements on the thermal behavior of supporting steel members. Those elements partially result in a restrained expansion of the fire protection system. Experimental investigations on coated beams and columns directly connected to space-enclosing elements are presented. Additionally, numerical simulations are performed for temperature field calculations of steel elements with intumescent coating. As a new development, the numerical model takes into account the expansion process of the intumescent coating.

Details

Journal of Structural Fire Engineering, vol. 6 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

1 – 10 of 173