Search results

1 – 10 of 112
Article
Publication date: 23 December 2015

Jinfeng Yu, Xiequan Liu and Xinhua Ni

Composite ceramic has the excellent properties at normal and high temperatures, especially when the structure of the composite eutectic is triangular symmetrical. Obviously…

Abstract

Composite ceramic has the excellent properties at normal and high temperatures, especially when the structure of the composite eutectic is triangular symmetrical. Obviously, mechanical behavior and fracture properties of composite ceramic closely relates to the micro-structure of symmetrical triangular eutectic. In order to reveal the mechanical properties of eutectic composite ceramic, it is necessary to determine the intrinsic strength of triangular composite eutectic. Since the fiber and matrix of triangular symmetrical composite eutectic sharing a same covalent bond, the theoretical cohesion strength of symmetrical triangular eutectic was obtained by the combination-separation displacement of intrinsic bond. Basing on micro-structure plastic deformation before fracture of composite eutectic matrix, the dislocation pile-up model of eutectic composite ceramics was established. And then intrinsic bond fracture shear stress of triangular symmetrical composite eutectic was given by using the theory of dislocation pile-up. According to the macroscopic structure properties of triangular symmetrical composite eutectic and the distribution of stress field of composite eutectic, intrinsic strength of eutectic was obtained. The results shows that intrinsic strength of triangular symmetrical composite eutectic possessed clear size-dependence and the stress decreases with the increases of the diameter of fiber inclusions.

Details

World Journal of Engineering, vol. 12 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 March 2024

Yuxuan Wu, Wenyuan Xu, Tianlai Yu and Yifan Wang

Polyurethane concrete (PUC), as a new type of steel bridge deck paving material, the bond-slip pattern at the interface with the steel plate is not yet clear. In this study, the…

Abstract

Purpose

Polyurethane concrete (PUC), as a new type of steel bridge deck paving material, the bond-slip pattern at the interface with the steel plate is not yet clear. In this study, the mechanical properties of the PUC and steel plate interface under the coupled action of temperature, normal force and tangential force were explored through shear tests and numerical simulations. An analytical model for bond-slip at the PUC/steel plate interface and a predictive model for the shear strength of the PUC/steel plate interface were developed.

Design/methodology/approach

The new shear test device designed in this paper overcomes the defect that the traditional oblique shear test cannot test the interface shear performance under the condition of fixed normal force. The universal testing machine (UTM) test machine was used to adjust the test temperature conditions. Combined with the results of the bond-slip test, the finite element simulation of the interface is completed by using the COHENSIVE unit to analyze the local stress distribution characteristics of the interface. The use of variance-based uncertainty analysis guaranteed the validity of the simulation.

Findings

The shear strength (τf) at the PUC-plate interface was negatively correlated with temperature while it was positively correlated with normal stress. The effect of temperature on the shear properties was more significant than that of normal stress. The slip corresponding to the maximum shear (D1) positively correlates with both temperature and normal stress. The interfacial shear ductility improves with increasing temperature.

Originality/value

Based on the PUC bond-slip measured curves, the relationship between bond stress and slip at different stages was analyzed, and the bond-slip analytical model at different stages was established; the model was defined by key parameters such as elastic ultimate shear stress τ0, peak stress τf and interface fracture energy Gf.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 November 2022

Yongliang Wang and Xin Zhang

Hydrofracturing technology has been widely used in tight oil and gas reservoir exploitation, and the fracture network formed by fracturing is crucial to determining the resources…

Abstract

Purpose

Hydrofracturing technology has been widely used in tight oil and gas reservoir exploitation, and the fracture network formed by fracturing is crucial to determining the resources recovery rate. Due to the complexity of fracture network induced by the random morphology and type of fluid-driven fractures, controlling and optimising its mechanisms is challenging. This paper aims to study the types of multiscale mode I/II fractures, the fluid-driven propagation of multiscale tensile and shear fractures need to be studied.

Design/methodology/approach

A dual bilinear cohesive zone model (CZM) based on energy evolution was introduced to detect the initiation and propagation of fluid-driven tensile and shear fractures. The model overcomes the limitations of classical linear fracture mechanics, such as the stress singularity at the fracture tip, and considers the important role of fracture surface behaviour in the shear activation. The bilinear cohesive criterion based on the energy evolution criterion can reflect the formation mechanism of complex fracture networks objectively and accurately. Considering the hydro-mechanical (HM) coupling and leak-off effects, the combined finite element-discrete element-finite volume approach was introduced and implemented successfully, and the results showed that the models considering HM coupling and leak-off effects could form a more complex fracture network. The multiscale (laboratory- and engineering-scale) Mode I/II fractures can be simulated in hydrofracturing process.

Findings

Based on the proposed method, the accuracy and applicability of the algorithm were verified by comparing the analytical solution of KGD and PKN models. The effects of different in situ stresses and flow rates on the dynamic propagation of hydraulic fractures at laboratory and engineering scales were investigated. when the ratio of in situ stress is small, the fracture propagation direction is not affected, and the fracture morphology is a cross-type fracture. When the ratio of in situ stress is relatively large, the propagation direction of the fracture is affected by the maximum in situ stress, and it is more inclined to propagate along the direction of the maximum in situ stress, forming double wing-type fractures. Hydrofracturing tensile and shear fractures were identified, and the distribution and number of each type were obtained. There are fewer hydraulic shear fractures than tensile fractures, and shear fractures appear in the initial stage of fracture propagation and then propagate and distribute around the perforation.

Originality/value

The proposed dual bilinear CZM is effective for simulating the types of Mode I/II fractures and seizing the fluid-driven propagation of multiscale tensile and shear fractures. Practical fracturing process involves the multi-type and multiscale fluid-driven fracture propagation. This study introduces general fluid-driven fracture propagation, which can be extended to the fracture propagation analysis of potential fluid fracturing, such as other liquids or supercritical gases.

Article
Publication date: 31 May 2019

Kehang Yu, Chen Yang, Jun Wang, Jiabo Yu and Yi Yang

The purpose of this paper is to study the variation of the mechanical strength and failure modes of solder balls with reducing diameters under conditions of multiple reflows.

Abstract

Purpose

The purpose of this paper is to study the variation of the mechanical strength and failure modes of solder balls with reducing diameters under conditions of multiple reflows.

Design/methodology/approach

The solder balls with diameters from 250 to 760 µm were mounted on the copper-clad laminate by 1-5 reflows. The strength of the solder balls was tested by the single ball shear test and pull test, respectively. The failure modes of tested samples were identified by combing morphologies of fracture surfaces and force-displacement curves. The stresses were revealed and the failure explanations were assisted by the finite element analysis for the shear test of single solder ball.

Findings

The average strength of a smaller solder ball (e.g. 250 µm in diameter) is higher than that of a larger one (e.g. 760 µm in diameter). The strength of smaller solder balls is more highly variable with multiple reflows than larger diameters balls, where the strength increased mostly with the number of reflows. According to load-displacement curves or fracture surface morphologies, the failure modes of solder ball in the shear and pull tests can be categorized into three kinds.

Originality/value

The strength of solder balls will not deteriorate when the diameter of solder ball is decreased with a reflow, but a smaller solder ball has a higher failure risk after multiple reflows. The failure modes for shear and pull tests can be identified quickly by the combination of force-displacement curves and the morphologies of fracture surfaces.

Details

Soldering & Surface Mount Technology, vol. 31 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 30 January 2024

Burçak Zehir, Mirsadegh Seyedzavvar and Cem Boğa

This study aims to comprehensively investigate the mixed-mode fracture behavior and mechanical properties of selective laser sintering (SLS) polyamide 12 (PA12) components…

Abstract

Purpose

This study aims to comprehensively investigate the mixed-mode fracture behavior and mechanical properties of selective laser sintering (SLS) polyamide 12 (PA12) components, considering different build orientations and layer thicknesses. The primary objectives include the following. Conducting mixed-mode fracture and mechanical analyses on SLS PA12 parts. Investigating the influence of build orientation and layer thickness on the mechanical properties of SLS-printed components. Examining the fracture mechanisms of SLS-produced Arcan fracture and tensile specimens through experimental methods and finite element analyses.

Design/methodology/approach

The research used a combination of experimental techniques and numerical analyses. Tensile and Arcan fracture specimens were fabricated using the SLS process with varying build orientations (X, X–Y, Z) and layer thicknesses (0.1 mm, 0.2 mm). Mechanical properties, including tensile strength, modulus of elasticity and critical stress intensity factor, were quantified through experimental testing. Mixed-mode fracture tests were conducted using a specialized fixture, and finite element analyses using the J-integral method were performed to calculate fracture toughness. Scanning electron microscopy (SEM) was used for detailed morphological analysis of fractured surfaces.

Findings

The investigation revealed that the highest tensile properties were achieved in samples fabricated horizontally in the X orientation with a layer thickness of 0.1 mm. Additionally, parts manufactured with a layer thickness of 0.2 mm exhibited favorable mixed-mode fracture behavior. The results emphasize the significance of build orientation and layer thickness in influencing mechanical properties and fracture behavior. SEM analysis provided valuable insights into the failure mechanisms of SLS-produced PA12 components.

Originality/value

This study contributes to the field of additive manufacturing by providing a comprehensive analysis of the mixed-mode fracture behavior and mechanical properties of SLS-produced PA12 components. The investigation offers novel insights into the influence of build orientation and layer thickness on the performance of such components. The combination of experimental testing, numerical analyses and SEM morphological observations enhances the understanding of fracture behavior in additive manufacturing processes. The findings contribute to optimizing the design and manufacturing of high-quality PA12 components using SLS technology.

Details

Rapid Prototyping Journal, vol. 30 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 August 2012

M. Grujicic, B. d'Entremont, B. Pandurangan, A. Grujicic, M. LaBerge, J. Runt, J. Tarter and G. Dillon

Blast‐induced traumatic brain injury (TBI) is a signature injury of the current military conflicts. Among the different types of TBI, diffuse axonal injury (DAI) plays an…

Abstract

Purpose

Blast‐induced traumatic brain injury (TBI) is a signature injury of the current military conflicts. Among the different types of TBI, diffuse axonal injury (DAI) plays an important role since it can lead to devastating effects in the inflicted military personnel. To better understand the potential causes associated with DAI, this paper aims to investigate a transient non‐linear dynamics finite element simulation of the response of the brain white matter to shock loading.

Design/methodology/approach

Brain white matter is considered to be a heterogeneous material consisting of fiber‐like axons and a structure‐less extracellular matrix (ECM). The brain white matter microstructure in the investigated corpus callosum region of the brain is idealized using a regular hexagonal arrangement of aligned equal‐size axons. Deviatoric stress response of the axon and the ECM is modeled using a linear isotropic viscoelastic formulation while the hydrostatic stress response is modeled using a shock‐type equation of state. To account for the stochastic character of the brain white matter microstructure and shock loading, a parametric study is carried out involving a factorial variation of the key microstructural and waveform parameters.

Findings

The results obtained show that the extent of axon undulations and the strength of axon/ECM bonding profoundly affect the spatial distribution and magnitude of the axonal axial normal and shear stresses (the stresses which can cause diffuse axonal injury).

Originality/value

The present approach enables a more accurate determination of the mechanical behavior of brain white matter when subjected to a shock.

Details

Multidiscipline Modeling in Materials and Structures, vol. 8 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 27 July 2012

Mariana D. Banea, Lucas F.M. da Silva and Raul D.S.G. Campilho

The purpose of this paper is to provide an insight into the techniques which are used and developed for adhesive bulk and joint specimens manufacturing.

Abstract

Purpose

The purpose of this paper is to provide an insight into the techniques which are used and developed for adhesive bulk and joint specimens manufacturing.

Design/methodology/approach

After a short introduction, the paper discusses various techniques for adhesive bulk and joint specimens manufacturing and highlights their advantages and limitations. A number of examples in the form of different bulk and joint specimens of different types of adhesives are used to show the methods for determining the adhesive's mechanical properties needed for design in adhesive technology. In order to predict the adhesive joint strength, the stress distribution and a suitable failure criterion are essential. If a continuum mechanics approach is used, the availability of the stress‐strain curve of the adhesive is sufficient (the bulk tensile test or the TAST test is used). For fracture mechanics‐based design, mode I and mode II toughness is needed (DCB and ENF tests are used). Finally, single lap joints (SLJs) are used to assess the adhesive's performance in a joint.

Findings

Before an adhesive can be specified for an application, screening tests should be conducted in order to compare and evaluate the various adhesion parameters. Properties of adhesives can vary greatly and an appropriate selection is essential for a proper joint design. Thus, to determine the stresses and strains in adhesive joints in a variety of configurations, it is necessary to characterize the adhesive behaviour in order to know its mechanical properties. A great variety of test geometries and specimens are used to obtain adhesive properties. However, for manufacturing of adhesive bulk specimens and joints necessary for use in these tests, properly, moulds should be designed.

Originality/value

The paper summarises the main methods of preparing adhesive bulk and joint specimens and the test methods for determining the mechanical properties needed for design in adhesive technology. Emphasis is given to the preparation of specimens of suitable quality for mechanical property determination and the moulds designed for this purpose.

Details

Assembly Automation, vol. 32 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 1 April 1992

JAROSLAV MACKERLE

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE…

Abstract

This bibliography is offered as a practical guide to published papers, conference proceedings papers and theses/dissertations on the finite element (FE) and boundary element (BE) applications in different fields of biomechanics between 1976 and 1991. The aim of this paper is to help the users of FE and BE techniques to get better value from a large collection of papers on the subjects. Categories in biomechanics included in this survey are: orthopaedic mechanics, dental mechanics, cardiovascular mechanics, soft tissue mechanics, biological flow, impact injury, and other fields of applications. More than 900 references are listed.

Details

Engineering Computations, vol. 9 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 August 2015

Mica Grujicic, Jennifer Snipes, Ramin Yavari, S. Ramaswami and Rohan Galgalikar

The purpose of this paper is to prevent their recession caused through chemical reaction with high-temperature water vapor, SiC-fiber/SiC-matrix ceramic-matrix composite (CMC…

Abstract

Purpose

The purpose of this paper is to prevent their recession caused through chemical reaction with high-temperature water vapor, SiC-fiber/SiC-matrix ceramic-matrix composite (CMC) components used in gas-turbine engines are commonly protected with so-called environmental barrier coatings (EBCs). EBCs typically consist of three layers: a top thermal and mechanical protection coat; an intermediate layer which provides environmental protection; and a bond coat which assures good EBC/CMC adhesion. The materials used in different layers and their thicknesses are selected in such a way that the coating performance is optimized for the gas-turbine component in question.

Design/methodology/approach

Gas-turbine engines, while in service, often tend to ingest various foreign objects of different sizes. Such objects, entrained within the gas flow, can be accelerated to velocities as high as 600 m/s and, on impact, cause substantial damage to the EBC and SiC/SiC CMC substrate, compromising the component integrity and service life. The problem of foreign object damage (FOD) is addressed in the present work computationally using a series of transient non-linear dynamics finite-element analyses. Before such analyses could be conducted, a major effort had to be invested toward developing, parameterizing and validating the constitutive models for all attendant materials.

Findings

The computed FOD results are compared with their experimental counterparts in order to validate the numerical methodology employed.

Originality/value

To the authors’ knowledge, the present work is the first reported study dealing with the computational analysis of the FOD sustained by CMCs protected with EBCs.

Details

Multidiscipline Modeling in Materials and Structures, vol. 11 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 15 November 2011

Chunqi Lian, Yan Zhuge and Simon Beecham

Porous concrete is a mixture of open‐graded coarse aggregate, water and cement. It is also occasionally referred to as no‐fines concrete or pervious concrete. Due to its high…

1025

Abstract

Purpose

Porous concrete is a mixture of open‐graded coarse aggregate, water and cement. It is also occasionally referred to as no‐fines concrete or pervious concrete. Due to its high infiltration capacity, it is viewed as an environmentally sustainable paving material for use in urban drainage systems since it can lead to reduced flooding and to the possibilities of stormwater harvesting and reuse. However, the high porosity is due in the main part to the lack of fine aggregate particles used in the manufacture of porous concrete. The purpose of this paper is to present a numerical method to understand more fully the structural properties of porous concrete. This method will provide a useful tool for engineers to design with confidence higher strength porous concrete systems.

Design/methodology/approach

In the method, porous concrete is modelled using a discrete element method (DEM). The mechanical behaviour of a porous concrete sample subjected to compressive and tensile forces is estimated using two‐dimensional Particle Flow Code (PFC2D).

Findings

Three numerical examples are given to verify the model. A comprehensive set of micro‐parameters particularly suitable for porous concrete is proposed. The accuracy and effectiveness of simulation are confirmed by comparison with experimental results and empirical equations.

Originality/value

The experimental investigations for porous concrete described in this paper have been designed and conducted by the authors. In addition, the type of two dimensional PFC analysis presented has rarely been used to model porous concrete strength characteristics and from the results presented in this paper, this analysis technique has good potential for predicting its mechanical properties.

Details

Engineering Computations, vol. 28 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 112