Search results

11 – 20 of 154
Article
Publication date: 8 August 2022

Ahmet Aytekin, Ömer Faruk Görçün, Fatih Ecer, Dragan Pamucar and Çağlar Karamaşa

Pharmaceutical supply chains (PSCs) need a well-operating and faultless logistics system to successfully store and distribute their medicines. Hospitals, health institutes, and…

Abstract

Purpose

Pharmaceutical supply chains (PSCs) need a well-operating and faultless logistics system to successfully store and distribute their medicines. Hospitals, health institutes, and pharmacies must maintain extra stock to respond requirements of the patients. Nevertheless, there is an inverse correlation between the level of medicine stock and logistics service level. The high stock level held by health institutions indicates that we have not sufficiently excellent logistics systems presently. As such, selecting appropriate logistics service providers (drug distributors) is crucial and strategic for PSCs. However, this is difficult for decision-makers, as highly complex situations and conflicting criteria influence such evaluation processes. So, a robust, applicable, and strong methodological frame is required to solve these decision-making problems.

Design/methodology/approach

To achieve this challenging issue, the authors develop and apply an integrated entropy-WASPAS methodology with Fermatean fuzzy sets for the first time in the literature. The evaluation process takes place in two stages, as in traditional multi-criteria problems. In the first stage, the importance levels of the criteria are determined by the FF-entropy method. Afterwards, the FF-WASPAS approach ranks the alternatives.

Findings

The feasibility of the proposed model is also supported by a case study where six companies are evaluated comprehensively regarding ten criteria. Herewith, total warehouse capacity, number of refrigerated vehicles, and personnel are the top three criteria that significantly influence the evaluation of pharmaceutical distribution and warehousing companies. Further, a comprehensive sensitivity analysis proves the robustness and effectiveness of the proposed approach.

Practical implications

The proposed multi-attribute decision model quantitatively aids managers in selecting logistics service providers considering imprecisions in the multi-criteria decision-making process.

Originality/value

A new model has been developed to present a sound mathematical model for selecting logistics service providers consisting of Fermatean fuzzy entropy and WASPAS methods. The paper's main contribution is presenting a comprehensive and more robust model for the ex ante evaluation and ranking of providers.

Article
Publication date: 20 February 2020

Haiming Liang, Xiao Zhang, Fang Fang and Xi Chen

The aim of this paper is to propose an optimization method for determining the emergency action, in which the compatibility between emergency alternatives and the collaborative…

Abstract

Purpose

The aim of this paper is to propose an optimization method for determining the emergency action, in which the compatibility between emergency alternatives and the collaborative relationship between departments are considered.

Design/methodology/approach

The individual emergency cost and individual emergency effect of each emergency alternative are calculated. And the collaborative emergency cost and collaborative emergency effect associated with a pair of emergency alternatives are calculated. Then, a bi-objective programming model maximizing the total emergency effect and minimizing the total emergency cost is constructed. A novel nondominated sorting genetic algorithm II (NNSGA II) is designed to solve the constructed model, subsequently. Finally, an example is given to illustrate the use of the proposed method, and the performance of NNSGA II is evaluated through a simulation experiment.

Findings

This paper proposes an effective method to manage complex emergency events that requires the coordinations of multiple departments. Also, this paper provides a new algorithm to determine an appropriate emergency action that performs well in managing both the emergency cost and emergency effect.

Originality/value

The findings contribute to the current methods in the field of emergency management. The method is used for dealing with the individual information of emergency alternatives and the collaborative information associated with a pair of alternatives.

Article
Publication date: 16 July 2021

Amit Chopra, Anish Sachdeva and Arvind Bhardwaj

The industry is relying on the preventive maintenance techniques that can minimize failures and provide industrial plants with effective equipment, but in many companies the…

Abstract

Purpose

The industry is relying on the preventive maintenance techniques that can minimize failures and provide industrial plants with effective equipment, but in many companies the maintenance tasks are performed very frequently and not as per plan and do not take into consideration the conditions of the plant and equipments. The failure of each and every component needs to be studied in order to choose the best maintenance strategy. This paper presents a fuzzy VIKOR (Multicriteria Optimization and Compromise Solution) technique which is used in developing a comprehensive approach for maintenance strategy selection in the Deinking plant of the paper industry to choose the appropriate maintenance strategy thereby reducing the unnecessary cost incurred on the maintenance.

Design/methodology/approach

In this paper, the Fuzzy VIKOR based methodology was applied for determining the maintenance criticality index of the deinking plant of the paper industry. The effect of failure of components were evaluated by three maintenance experts on five performance criteria that is chance of failure, chance of non-detection, downtime length, severity, spare part criticality. The components were ranked according to the maintenance criticality index and thereby implementing the appropriate maintenance strategy.

Findings

The Fuzzy VIKOR technique was applied to calculate the ranking of various components of paper industry based on the views and judgment of three maintenance experts. The proposed technique suggested the appropriate maintenance strategy for various components taking into consideration the maintenance criticality index of the components.

Originality/value

The proposed technique will help the maintenance managers to solve a discrete problem with non-commensurable and conflicting criteria. The study will help the industries to reduce the unnecessary maintenance tasks and thereby reduce the maintenance cost. This will help the maintenance practitioners in choosing the best and most effective strategy for the organization with regard to the market and company situation especially in the changing business requirement of Industry 4.0.

Details

International Journal of Quality & Reliability Management, vol. 39 no. 5
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 9 February 2022

Hafiz Muhammad Athar Farid and Muhammad Riaz

The authors develop some prioritized operators named Pythagorean fuzzy prioritized averaging operator with priority degrees and Pythagorean fuzzy prioritized geometric operator…

Abstract

Purpose

The authors develop some prioritized operators named Pythagorean fuzzy prioritized averaging operator with priority degrees and Pythagorean fuzzy prioritized geometric operator with priority degrees. The properties of the existing method are routinely compared to those of other current approaches, emphasizing the superiority of the presented work over currently used methods. Furthermore, the impact of priority degrees on the aggregate outcome is thoroughly examined. Further, based on these operators, a decision-making approach is presented under the Pythagorean fuzzy set environment. An illustrative example related to the selection of the best alternative is considered to demonstrate the efficiency of the proposed approach.

Design/methodology/approach

In real-world situations, Pythagorean fuzzy numbers are exceptionally useful for representing ambiguous data. The authors look at multi-criteria decision-making issues in which the parameters have a prioritization relationship. The idea of a priority degree is introduced. The aggregation operators are formed by awarding non-negative real numbers known as priority degrees among strict priority levels. Consequently, the authors develop some prioritized operators named Pythagorean fuzzy prioritized averaging operator with priority degrees and Pythagorean fuzzy prioritized geometric operator with priority degrees.

Findings

The authors develop some prioritized operators named Pythagorean fuzzy prioritized averaging operator with priority degrees and Pythagorean fuzzy prioritized geometric operator with priority degrees. The properties of the existing method are routinely compared to those of other current approaches, emphasizing the superiority of the presented work over currently used methods. Furthermore, the impact of priority degrees on the aggregate outcome is thoroughly examined. Further, based on these operators, a decision-making approach is presented under the Pythagorean fuzzy set environment. An illustrative example related to the selection of the best alternative is considered to demonstrate the efficiency of the proposed approach.

Originality/value

The aggregation operators are formed by awarding non-negative real numbers known as priority degrees among strict priority levels. Consequently, the authors develop some prioritized operators named Pythagorean fuzzy prioritized averaging operator with priority degrees and Pythagorean fuzzy prioritized geometric operator with priority degrees. The properties of the existing method are routinely compared to those of other current approaches, emphasizing the superiority of the presented work over currently used methods. Furthermore, the impact of priority degrees on the aggregate outcome is thoroughly examined.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 15 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Book part
Publication date: 28 June 2023

Ali Asghar Abbassi Kamardi and Sina Sarmadi

The decision to become international is a highlighted organisational decision that affects all dimensions at all firm levels. Human resources are also among the parts of the…

Abstract

The decision to become international is a highlighted organisational decision that affects all dimensions at all firm levels. Human resources are also among the parts of the organisation affected by this decision. Paying attention to employees can speed up and facilitate this process. Organisational integrity is one of the most significant issues that must be considered. In this regard, identifying, investigating and planning to deal with the destructive effects that may influence the employees of small and medium-sized enterprise (SMEs) in internationalisation, are among the subjects that have so far received less attention and should be studied more. The present study explores the destructive influences of internationalisation on the employees of SMEs by a hybrid multi-layer decision-making model-psychological solution. First, by reviewing the literature, the destructive impacts of internationalisation on employees are extracted. In the next stage, these factors are screened according to the condition of the SMEs in an emerging economy by interval-valued intuitionistic hesitant fuzzy Delphi (IVIHF-Delphi). The impact of these factors on each other is then evaluated applying interval-valued intuitionistic hesitant fuzzy DEMATEL-based ANP (IVIHF-DANP). Consequently, the highlighted destructive impacts are determined and the psychological solutions to face them are provided.

Details

Decision-Making in International Entrepreneurship: Unveiling Cognitive Implications Towards Entrepreneurial Internationalisation
Type: Book
ISBN: 978-1-80382-234-1

Keywords

Article
Publication date: 9 February 2023

Benting Wan and Juelin Huang

The purpose of this paper is to develop a multi-attribute group decision-making (MAGDM) method under the q-rung orthopair trapezoidal fuzzy environment, which calculates the…

Abstract

Purpose

The purpose of this paper is to develop a multi-attribute group decision-making (MAGDM) method under the q-rung orthopair trapezoidal fuzzy environment, which calculates the interaction between the criteria depending on the proposed q-rung orthopair trapezoidal fuzzy aggregation Choquet integral (q-ROTrFACI) and employ TODIM (an acronym in Portuguese of Interactive and Multi-criteria Decision Making) to consider the risk psychology of decision-makers, to determine the optimal ranking of alternatives.

Design/methodology/approach

In MAGDM, q-rung orthopair trapezoidal fuzzy numbers (q-ROTrFNs) are efficient to indicate the quantitative vagueness of decision-makers. The q-ROTrFACI operator is defined and some properties are proved. Then, a novel similarity measure is developed by fusing the area and coordinates of the q-rung orthopair trapezoidal fuzzy function. Based on the above, a Choquet integral-based TODIM (CI-TODIM) method to consider the risk psychology of decision-makers is proposed and two cases are provided to prove superiority of the method.

Findings

The paper investigates q-ROTrFACI operator to productively solve problems with interdependent criteria. Then, an approach is proposed to determine the center point of q--ROTrFNs and a q-rung orthopair trapezoidal fuzzy similarity is constructed. Furthermore, CI-TODIM method is devised based on the proposed q-ROTrFACI operator and similarity in q-rung orthopair trapezoidal fuzzy context. The illustration example of business models' solutions and hypertension health management are given to demonstrate the effectiveness and superiority of proposed method.

Originality/value

The paper develops a novel CI-TODIM method that effectively solves the MAGDM problems under the premise of fully considering the priority of criteria and the risk preference of decision-makers, which provides guiding advantages for practical decision-making and enriches the application of decision-making theory.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 14 May 2021

Lijuan Chen, Ditao Duan, Arunodaya Raj Mishra and Melfi Alrasheedi

This study caries a survey approach using the expert's interview and literature to select the important criteria to select and evaluate the third-party reverse logistics providers…

Abstract

Purpose

This study caries a survey approach using the expert's interview and literature to select the important criteria to select and evaluate the third-party reverse logistics providers (3PRLPs) in manufacturing companies. In total, 16 criteria are selected to evaluate 3PRLPs, and these criteria are classified on the basis of three main elements of sustainable growth, including economic, social and environmental development. Therefore, a hybrid decision-making approach is utilized to evaluate and rank the 3PRLPs in manufacturing companies.

Design/methodology/approach

This paper proposes a new decision-making approach using the projection model and entropy method under the interval-valued intuitionistic fuzzy set to assess 3PRLPs based on sustainability perspectives. A survey approach using the literature review and experts' interview is conducted to select the important criteria to select and evaluate 3PRLPs in manufacturing companies. To assess the criteria weight, the entropy method is used. Further, the projection model is applied to prioritize the 3PRLPs option. Sensitivity analysis and comparison process are performed in order to test and validate the developed method.

Findings

The presented methodology uses the benefits to determine the former for measuring the parameters considered and the latter for rating the 3PRLPs alternatives. A case study is taken to 3PRLPs in the manufacturing industry to illustrate the efficiency of the introduced hybrid method. The findings of this study indicate that when facing uncertainties of input and qualitative data, the proposed solution delivers more viable performance and therefore is suitable for wider uses.

Originality/value

The conception of the circular economy (CE) comes from the last 4 decades, and in recent years, tremendous attention has been carried out on this concept, partially because of the availability of natural resources in the world and changes in consumption behaviour of developed and developing nations. Remarkably, the sustainable supply chain management concepts are established parallel to the CE foundations, grown in industrial practice and ecology literature for a long time. In fact, to reduce the environmental concerns, sustainable supply chain management seeks to diminish the materials' flow and minimize the unintentional harmful consequences of consumption and production processes. Customers and governments are becoming increasingly aware of the environmental sustainability in the CE era, which allows businesses to concentrate more resources on reverse logistics (RLs). However, most manufacturing enterprises have been inspired to outsource their RL operations to competent 3PRLPs due to limited resources and technological limitations. In RL outsourcing practices, the selection of the best 3PRLP is helpfully valuable due to its potential to increase the economic viability of enterprises and boost their long-term growth.

Details

Journal of Enterprise Information Management, vol. 35 no. 4/5
Type: Research Article
ISSN: 1741-0398

Keywords

Article
Publication date: 2 March 2022

Somesh Agarwal, Mohit Tyagi and Rajiv Kumar Garg

The purpose of this study is to present Industry 4.0 technologies for advancing the circular economy (CE) adaption in manufacturing industry’s supply chain (SC) network. To pursue…

Abstract

Purpose

The purpose of this study is to present Industry 4.0 technologies for advancing the circular economy (CE) adaption in manufacturing industry’s supply chain (SC) network. To pursue the same, Industry 4.0 technological aspects were recognized as solution measures to overcome the challenges for CE implementation in SC.

Design methodology approach

A new hierarchical framework containing 13 leading CE challenges and eight promising Industry 4.0 technological aspects had been proposed, representing their mutual relationship. The proposed framework was analysed using a hybrid approach of analytic hierarchy process (AHP) and combinative distance-based assessment (CODAS) under interval-valued intuitionistic fuzzy (IVIF) environment. The IVIF-AHP was used to acquire the priority weights of the CE challenges, whereas the IVIF-CODAS was used to attain the preference order of the proposed technological aspects.

Findings

The key findings of the present work indicate that “Information disruptions among the SC members due to multiple channels” and “Manpower inability to handle the toxic materials” are the two most critical challenges hindering the adoption of CE practices in SC. Along with, the results also demonstrate that to overcome these challenges, “Smarter equipment to empower flexibility and mass customization” and “Big data driven decision-making system” are the two most significant Industry 4.0 technological solutions, adoption of which might encourage the organizations to align their operations with CE philosophies.

Research limitations implications

The sample size of the experts engaged in work was limited; however, big data studies could be conducted in future to capture more insights of the stated topic. In addition to this, to understand the implication of CE on Industry 4.0-based manufacturing, a separate study can be synthesised in future.

Originality value

The proposed work facilitates a new framework consolidating various perspectives associated with CE implementation into a manufacturing industry considering the scenario of Indian rubber industry. This study enables the decision-makers to recognize the challenging factors for CE implementation into their organizations and up-taking the proposed Industry 4.0 practices as technological measures for improving the organization overall performance.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 July 2022

Pouyan Mahdavi-Roshan and Seyed Meysam Mousavi

Most projects are facing delays, and accelerating the pace of project progress is a necessity. Project managers are responsible for completing the project on time with minimum…

Abstract

Purpose

Most projects are facing delays, and accelerating the pace of project progress is a necessity. Project managers are responsible for completing the project on time with minimum cost and with maximum quality. This study provides a trade-off between time, cost, and quality objectives to optimize project scheduling.

Design/methodology/approach

The current paper presents a new resource-constrained multi-mode time–cost–quality trade-off project scheduling model with lags under finish-to-start relations. To be more realistic, crashing and overlapping techniques are utilized. To handle uncertainty, which is a source of project complexity, interval-valued fuzzy sets are adopted on several parameters. In addition, a new hybrid solution approach is developed to cope with interval-valued fuzzy mathematical model that is based on different alpha-levels and compensatory methods. To find the compatible solution among conflicting objectives, an arithmetical average method is provided as a compensatory approach.

Findings

The interval-valued fuzzy sets approach proposed in this paper is denoted to be scalable, efficient, generalizable and practical in project environments. The results demonstrated that the crashing and overlapping techniques improve time–cost–quality trade-off project scheduling model. Also, interval-valued fuzzy sets can properly manage expressions of the uncertainty of projects which are realistic and practical. The proposed mathematical model is validated by solving a medium-sized dataset an adopted case study. In addition, with a sensitivity analysis approach, the solutions are compared and the model performance is confirmed.

Originality/value

This paper introduces a new continuous-based, resource-constrained, and multi-mode model with crashing and overlapping techniques simultaneously. In addition, a new hybrid compensatory solution approach is extended based on different alpha-levels to handle interval-valued fuzzy multi-objective mathematical model of project scheduling with influential uncertain parameters.

Details

Kybernetes, vol. 52 no. 10
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 4 May 2018

Gülin Feryal Can and Pelin Toktas

Traditional risk assessment (RA) methodologies cannot model vagueness in risk and cannot prioritize corrective-preventive measures (CPMs) by considering effectiveness of those on…

1033

Abstract

Purpose

Traditional risk assessment (RA) methodologies cannot model vagueness in risk and cannot prioritize corrective-preventive measures (CPMs) by considering effectiveness of those on risk types (RTs). These cannot combine and reflect accurately different subjective opinions and cannot be used in a linguistic manner. Risk factors (RFs) are assumed to have the same importance and interrelations between RFs are not considered. This study aims to overcome these disadvantages by combining fuzzy logic with multi-criteria decision-making in a dynamic manner.

Design/methodology/approach

This study proposes a novel three-stage fuzzy risk matrix-based RA integrating fuzzy decision-making trial and evaluation laboratory (F-DEMATEL) and fuzzy multi-attributive border approximation area comparison (F-MABAC). At the first stage, importance weights of RFs are computed by F-DEMATEL. At the second stage, risk degrees of RTs are computed via using fuzzy risk matrix. At the third stage, CPMs are ranked by F-MABAC. Finally, a numerical example for RA in a warehouse is given.

Findings

Results show that developing instructions for material loading or unloading is the most important CPM and severity is the most important RF for the warehouse.

Originality/value

This study has originality in terms of having fuzzy dynamic structure. At first, RFs are assumed to be criteria sets then, RTs are assumed to be criteria set considering their risk degrees to rank CPMs in a fuzzy manner. Risk degrees of RTs are used for weights of RTs and effectiveness of CPMs are used for performance values of CPMs.

Details

Kybernetes, vol. 47 no. 9
Type: Research Article
ISSN: 0368-492X

Keywords

11 – 20 of 154