Search results

1 – 10 of 14
Article
Publication date: 8 November 2022

Sanaz Tabatabaee, Mojtaba Ashour, Haleh Sadeghi, Seyed Amirali Hoseini, Saeed Reza Mohandes, Amir Mahdiyar, Syuhaida Ismail and M. Reza Hosseini

To come up with a prudent decision on the installation of an appropriate green wall (GW) on buildings, this study presents a novel decision-making algorithm. The proposed…

Abstract

Purpose

To come up with a prudent decision on the installation of an appropriate green wall (GW) on buildings, this study presents a novel decision-making algorithm. The proposed algorithm considers the importance of barriers hampering GW adoption, as well as their relationships with regard to different types of GWs existing in a contextual setting.

Design/methodology/approach

The proposed methodological approach is based on the integration of qualitative and quantitative techniques by employing focus group discussion, fuzzy-based best-worst method and fuzzy TOPSIS.

Findings

Based on the experiences of qualified experts involved in related projects in Hong Kong, the following conclusions are drawn: (1) cost, installation and maintenance-related barriers are perceived to have the highest importance, (2) modular living wall system is the most suitable GW system for the context of Hong Kong and (3) existing barriers are found to have a pivotal role in the ranking of the most suitable GW systems.

Practical implications

The findings provide valuable insight not only for policymakers and stakeholders, but also for establishing a methodological approach that can assist decision-makers in identifying the most beneficial GW system rather than the most applicable one. This could have significant implications and introduce potential changes to the common way of practice within the industry and lay the foundation for wider adoption of GW.

Originality/value

While previous studies have investigated the sustainability-related issues of GW façade applications, the current body of knowledge is deprived of a comprehensive methodological approach for the selection of the most suitable GW systems.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 3
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 19 December 2022

Hui Zhao, Yuanyuan Ge and Weihan Wang

This study aims to improve the offshore wind farm (OWF) site selection evaluation index system and establishes a decision-making model for OWF site selection. It is expected to…

Abstract

Purpose

This study aims to improve the offshore wind farm (OWF) site selection evaluation index system and establishes a decision-making model for OWF site selection. It is expected to provide helpful references for the progress of offshore wind power.

Design/methodology/approach

Firstly, this paper establishes an evaluation criteria system for OWF site selection, considering six criteria (wind resource, environment, economic, technical, social and risk) and related subcriteria. Then, the Criteria Importance Though Intercrieria Correlation (CRITIC) method is introduced to figure out the weights of evaluation indexes. In addition, the cumulative prospect theory and technique for order preference by similarity to an ideal solution (CPT-TOPSIS) method are employed to construct the OWF site selection decision-making model. Finally, taking the OWF site selection in China as an example, the effectiveness and robustness of the framework are verified by sensitivity analysis and comparative analysis.

Findings

This study establishes the OWF site selection evaluation system and constructs a decision-making model under the spherical fuzzy environment. A case of China is employed to verify the effectiveness and feasibility of the model.

Originality/value

In this paper, a new decision-making model is proposed for the first time, considering the ambiguity and uncertainty of information and the risk attitudes of decision-makers (DMs) in the decision-making process.

Details

Kybernetes, vol. 53 no. 3
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 24 October 2023

Bianca Arcifa de Resende, Franco Giuseppe Dedini, Jony Javorsky Eckert, Tiago F.A.C. Sigahi, Jefferson de Souza Pinto and Rosley Anholon

This study aims to propose a facilitating methodology for the application of Fuzzy FMEA (Failure Mode and Effect Analysis), comparing the traditional approach with fuzzy…

Abstract

Purpose

This study aims to propose a facilitating methodology for the application of Fuzzy FMEA (Failure Mode and Effect Analysis), comparing the traditional approach with fuzzy variations, supported by a case application in the aeronautical sector.

Design/methodology/approach

Based on experts' opinions in risk analysis within the aeronautical sector, rules governing the relationship between severity, occurrence, detection and risk factor were defined. This served as input for developing a fuzzyfied FMEA tool using the Matlab Fuzzy Logic Toolbox. The tool was applied to the sealing process in a company within the aeronautical sector, using triangular and trapezoidal membership functions, and the results were compared with the traditional FMEA approach.

Findings

The results of the comparative application of traditional FMEA and fuzzyfied FMEA using triangular and trapezoidal functions have yielded valuable insights into risk analysis. The findings indicated that fuzzyfied FMEA maintained coherence with the traditional analysis in identifying higher-risk effects, aligning with the prioritization of critical failure modes. Additionally, fuzzyfied FMEA allowed for a more refined prioritization by accounting for variations in each variable through fuzzy rules, thereby improving the accuracy of risk analysis and providing a more realistic representation of potential hazards. The application of the developed fuzzyfied FMEA approach showed promise in enhancing risk assessment in the aeronautical sector by considering uncertainties and offering a more detailed and context-specific analysis compared to conventional FMEA.

Practical implications

This study emphasizes the potential of fuzzyfied FMEA in enhancing risk assessment by accurately identifying critical failure modes and providing a more realistic representation of potential hazards. The application case reveals that the proposed tool can be integrated with expert knowledge to improve decision-making processes and risk mitigation strategies within the aeronautical industry. Due to its straightforward approach, this facilitating methodology could also prove beneficial in other industrial sectors.

Originality/value

This paper presents the development and application of a facilitating methodology for implementing Fuzzy FMEA, comparing it with the traditional approach and incorporating variations using triangular and trapezoidal functions. This proposed methodology uses the Toolbox Fuzzy Logic of Matlab to create a fuzzyfied FMEA tool, enabling a more nuanced and context-specific risk analysis by considering uncertainties.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 26 March 2024

Çağla Cergibozan and İlker Gölcük

The study aims to propose a decision-support system to determine the location of a regional disaster logistics warehouse. Emphasizing the importance of disaster logistics, it…

Abstract

Purpose

The study aims to propose a decision-support system to determine the location of a regional disaster logistics warehouse. Emphasizing the importance of disaster logistics, it considers the criteria to be evaluated for warehouse location selection. It is aimed to determine a warehouse location that will serve the disaster victims most efficiently in case of a disaster by making an application for the province of Izmir, where a massive earthquake hit in 2020.

Design/methodology/approach

The paper proposes a fuzzy best–worst method to evaluate the alternative locations for the warehouse. The method considers the linguistic evaluations of the decision-makers and provides an advantage in terms of comparison consistency. The alternatives were identified through interviews and discussions with a group of experts in the fields of humanitarian aid and disaster relief operations. The group consists of academics and a vice-governor, who had worked in Izmir. The results of a previously conducted questionnaire were also used in determining these locations.

Findings

It is shown how the method will be applied to this problem, and the most effective location for the disaster logistics warehouse in Izmir has been determined.

Originality/value

This study contributes to disaster preparedness and brings a solution to the organization of the logistics services in Izmir.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 21 October 2022

Mohammad Hossein Ronaghi

The fourth industrial revolution and digital transformation have caused paradigm changes in the procedures of goods production and services through disruptive technologies, and…

Abstract

Purpose

The fourth industrial revolution and digital transformation have caused paradigm changes in the procedures of goods production and services through disruptive technologies, and they have formed new methods for business models. Health and medicine fields have been under the effect of these technology advancements. The concept of smart hospital is formed according to these technological transformations. The aim of this research, other than explanation of smart hospital components, is to present a model for evaluating a hospital readiness for becoming a smart hospital.

Design/methodology/approach

This research is an applied one, and has been carried out in three phases and according to design science research. Based on the previous studies, in the first phase, the components and technologies effecting a smart hospital are recognized. In the second phase, the extracted components are prioritized using type-2 fuzzy analytic hierarchical process based on the opinion of experts; later, the readiness model is designed. In the third phase, the presented model would be tested in a hospital.

Findings

The research results showed that the technologies of internet of things, robotics, artificial intelligence, radio-frequency identification as well as augmented and virtual reality had the most prominence in a smart hospital.

Originality/value

The innovation and originality of the forthcoming research is to explain the concept of smart hospital, to rank its components and to provide a model for evaluating the readiness of smart hospital. Contribution of this research in terms of theory explains the concept of smart hospital and in terms of application presents a model for assessing the readiness of smart hospitals.

Details

Journal of Science and Technology Policy Management, vol. 15 no. 2
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 12 March 2024

Hui Zhao, Simeng Wang and Chen Lu

With the continuous development of the wind power industry, wind power plant (WPP) has become the focus of resource development within the industry. Site selection, as the initial…

Abstract

Purpose

With the continuous development of the wind power industry, wind power plant (WPP) has become the focus of resource development within the industry. Site selection, as the initial stage of WPP development, is directly related to the feasibility of construction and the future revenue of WPP. Therefore, the purpose of this paper is to study the siting of WPP and establish a framework for siting decision-making.

Design/methodology/approach

Firstly, a site selection evaluation index system is constructed from four aspects of economy, geography, environment and society using the literature review method and the Delphi method, and the weights of each index are comprehensively determined by combining the Decision-making Trial and Evaluation Laboratory (DEMATEL) and the entropy weight method (EW). Then, prospect theory and the multi-criteria compromise solution ranking method (VIKOR) are introduced to rank the potential options and determine the best site.

Findings

China is used as a case study, and the robustness and reliability of the methodology are demonstrated through sensitivity analysis, comparative analysis and ablation experiment analysis. This paper aims to provide a useful reference for WPP siting research.

Originality/value

In this paper, DEMATEL and EW are used to determine the weights of indicators, which overcome the disadvantage of single assignment. Prospect theory and VIKOR are combined to construct a decision model, which also considers the attitude of the decision-maker and the compromise solution of the decision result. For the first time, this framework is applied to WPP siting research.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 28 September 2023

Ammar Chakhrit, Mohammed Bougofa, Islam Hadj Mohamed Guetarni, Abderraouf Bouafia, Rabeh Kharzi, Naima Nehal and Mohammed Chennoufi

This paper aims to enable the analysts of reliability and safety systems to evaluate the risk and prioritize failure modes ideally to prefer measures for reducing the risk of…

Abstract

Purpose

This paper aims to enable the analysts of reliability and safety systems to evaluate the risk and prioritize failure modes ideally to prefer measures for reducing the risk of undesired events.

Design/methodology/approach

To address the constraints considered in the conventional failure mode and effects analysis (FMEA) method for criticality assessment, the authors propose a new hybrid model combining different multi-criteria decision-making (MCDM) methods. The analytical hierarchy process (AHP) is used to construct a criticality matrix and calculate the weights of different criteria based on five criticalities: personnel, equipment, time, cost and quality. In addition, a preference ranking organization method for enrichment evaluation (PROMETHEE) method is used to improve the prioritization of the failure modes. A comparative work in which the robust data envelopment analysis (RDEA)-FMEA approach was used to evaluate the validity and effectiveness of the suggested approach and simplify the comparative analysis.

Findings

This work aims to highlight the real case study of the automotive parts industry. Using this analysis enables assessing the risk efficiently and gives an alternative ranking to that acquired by the traditional FMEA method. The obtained findings offer that combining of two multi-criteria decision approaches and integrating their outcomes allow for instilling confidence in decision-makers concerning the risk assessment and the ranking of the different failure modes.

Originality/value

This research gives encouraging outcomes concerning the risk assessment and failure modes ranking in order to reduce the frequency of occurrence and gravity of the undesired events by handling different forms of uncertainty and divergent judgments of experts.

Details

International Journal of Quality & Reliability Management, vol. 41 no. 4
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 15 February 2024

Quanwei Yin, Liang Zhang and Xudong Zhao

This paper aims to study the issues of output reachable set estimation for the linear singular Markovian jump systems (SMJSs) with time-varying delay based on a proportional plus…

Abstract

Purpose

This paper aims to study the issues of output reachable set estimation for the linear singular Markovian jump systems (SMJSs) with time-varying delay based on a proportional plus derivative (PD) bumpless transfer (BT) output feedback (OF) control scheme.

Design/methodology/approach

To begin with, a sufficient criterion is given in the form of a linear matrix inequality based on the Lyapunov stability theory. Then, a PD-BT OF controller is designed to keep all the output signs of the system are maintain within a predetermined ellipsoid. Finally, numerical and practical examples are used to demonstrate the efficiency of the approach.

Findings

Based on PD control and BT control method, an OF control strategy for the linear SMJSs with time-varying delay is proposed.

Originality/value

The output reachable set synthesis of linear SMJSs with time-varying delay can be solved by using the proposed approach. Besides, to obtain more general results, the restrictive assumptions of some parameters are removed. Furthermore, a sufficiently small ellipsoid can be obtained by the design scheme adopted in this paper, which reduces the conservatism of the existing results.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 18 January 2024

Sa Xiao, Xuyang Chen, Yuankai Lu, Jinhua Ye and Haibin Wu

Imitation learning is a powerful tool for planning the trajectory of robotic end-effectors in Cartesian space. Present methods can adapt the trajectory to the obstacle; however…

Abstract

Purpose

Imitation learning is a powerful tool for planning the trajectory of robotic end-effectors in Cartesian space. Present methods can adapt the trajectory to the obstacle; however, the solutions may not always satisfy users, whereas it is hard for a nonexpert user to teach the robot to avoid obstacles in time as he/she wishes through demonstrations. This paper aims to address the above problem by proposing an approach that combines human supervision with the kernelized movement primitives (KMP) model.

Design/methodology/approach

This approach first extracts the reference database used to train KMP from demonstrations by using Gaussian mixture model and Gaussian mixture regression. Subsequently, KMP is used to modulate the trajectory of robotic end-effectors in real time based on feedback from its interaction with humans to avoid obstacles, which benefits from a novel reference database update strategy. The user can test different obstacle avoidance trajectories in the current task until a satisfactory solution is found.

Findings

Experiments performed with the KUKA cobot for obstacle avoidance show that this approach can adapt the trajectories of the robotic end-effector to the user’s wishes in real time, including trajectories that the robot has already passed and has not yet passed. Simulation comparisons also show that it exhibits better performance than KMP with the original reference database update strategy.

Originality/value

An interactive learning approach based on KMP is proposed and verified, which not only enables users to plan the trajectory of robotic end-effectors for obstacle avoidance more conveniently and efficiently but also provides an effective idea for accomplishing interactive learning tasks under constraints.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 March 2024

Min Wan, Mou Chen and Mihai Lungu

This paper aims to study a neural network-based fault-tolerant controller to improve the tracking control performance of an unmanned autonomous helicopter with system uncertainty…

Abstract

Purpose

This paper aims to study a neural network-based fault-tolerant controller to improve the tracking control performance of an unmanned autonomous helicopter with system uncertainty, external disturbances and sensor faults, using the prescribed performance method.

Design/methodology/approach

To ensure that the tracking error satisfies the prescribed performance, the authors adopt an error transformation function method. A control scheme based on the neural network and high-order disturbance observer is designed to guarantee the boundedness of the closed-loop system. A simulation is performed to prove the validity of the control scheme.

Findings

The developed adaptive fault-tolerant control method makes the system with sensor fault realize tracking control. The error transformation function method can effectively handle the prescribed performance requirements. Sensor fault can be regarded as a type of system uncertainty. The uncertainty can be approximated accurately using neural networks. A high-order disturbance observer can effectively suppress compound disturbances.

Originality/value

The tracking performance requirements of unmanned autonomous helicopter system are considered in the design of sensor fault-tolerant control. The inequality constraint that the output tracking error must satisfy is transformed into an unconstrained problem by introducing an error transformation function. The fault state of the velocity sensor is considered as the system uncertainty, and a neural network is used to approach the total uncertainty. Neural network estimation errors and external disturbances are treated as compound disturbances, and a high-order disturbance observer is constructed to compensate for them.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 14