Search results

1 – 10 of 41
Article
Publication date: 11 January 2024

Ahmed Ashteyat, Ala Taleb Obaidat, Yasmeen Taleb Obeidat and Ahmad Bani Awwad

The paper aims to introduces an experimental work to investigate the torsional behavior of reinforced concrete (RC) beams strengthened by near-surface mounted (NSM) carbon…

18

Abstract

Purpose

The paper aims to introduces an experimental work to investigate the torsional behavior of reinforced concrete (RC) beams strengthened by near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) ropes.

Design/methodology/approach

In this research, nine rectangular RC beams of 250 mm × 300 mm cross-section and 1,600 mm in length were constructed and tested considering the studied parameters. These parameters include the length of the CFRP rope, the orientation of the CFRP rope, the arrangement of longitudinal and the scheme of NSM-CFRP ropes.

Findings

In comparison to control specimens, the results demonstrate a considerable improvement in the torsional response of RC beams strengthened with the CFRP rope. Additionally, specimens strengthened with 90° vertical ropes increase torsional moment capacity more efficiently than specimens strengthened with 45° inclined ropes since the stress concentration leads to premature debonding of the CFRP rope. Whereas RC beams' ability to withstand torsional moments is reduced as the distance between reinforcing CFRP ropes is increased. According to test results, adding CFRP ropes to RC beams' bottoms had a slightly positive impact on torsional response.

Originality/value

This paper fulfills an identified need to study how the using of the CFRP rope is effective in strengthening RC beam subjected to torsion moment.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 15 April 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Zuraihana Bachok, Mohamad Fikri Mohd Sharif, Fakhrozi Che Ani, Mohamad Riduwan Ramli and Muhamed Abdul Fatah bin Muhamed Mukhtar

This study aims to investigate the possible defects and their root causes in a soft-termination multilayered ceramic capacitor (MLCC) when subjected to a thermal reflow process.

Abstract

Purpose

This study aims to investigate the possible defects and their root causes in a soft-termination multilayered ceramic capacitor (MLCC) when subjected to a thermal reflow process.

Design/methodology/approach

Specimens of the capacitor assembly were subjected to JEDEC level 1 preconditioning (85 °C/85%RH/168 h) with 5× reflow at 270°C peak temperature. Then, they were inspected using a 2 µm scanning electron microscope to investigate the evidence of defects. The reliability test was also numerically simulated and analyzed using the extended finite element method implemented in ABAQUS.

Findings

Excellent agreements were observed between the SEM inspections and the simulation results. The findings showed evidence of discontinuities along the Cu and the Cu-epoxy layers and interfacial delamination crack at the Cu/Cu-epoxy interface. The possible root causes are thermal mismatch between the Cu and Cu-epoxy layers, moisture contamination and weak Cu/Cu-epoxy interface. The maximum crack length observed in the experimentally reflowed capacitor was measured as 75 µm, a 2.59% difference compared to the numerical prediction of 77.2 µm.

Practical implications

This work's contribution is expected to reduce the additional manufacturing cost and lead time in investigating reliability issues in MLCCs.

Originality/value

Despite the significant number of works on the reliability assessment of surface mount capacitors, work on crack growth in soft-termination MLCC is limited. Also, the combined experimental and numerical investigation of reflow-induced reliability issues in soft-termination MLCC is limited. These cited gaps are the novelties of this study.

Details

Microelectronics International, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 31 October 2023

Ouided Dehas, Laidi Babouri, Yasmina Biskri and Jean-Francois Bardeau

This study aims to deal with both the development and mechanical investigations of unsaturated polyester matrix (UPR) composites containing recycled polyethylene terephthalate…

Abstract

Purpose

This study aims to deal with both the development and mechanical investigations of unsaturated polyester matrix (UPR) composites containing recycled polyethylene terephthalate (PET) fibers as new fillers.

Design/methodology/approach

UPR/PET fibers composites have been developed as mats by incorporating 5, 8, 13 and 18 parts per hundred of rubber (phr) of 6-, 10- and 15-mm length PET fibers from the recycling of postconsumer bottles. The mechanical and physical properties of the composites were investigated as a function of fiber content and length. A significant increase in stress at break and in ultimate stress (sr) were observed for composites reinforced with 5 and 8 phr of 15-mm length PET fibers. The Izod impact strength of UPR/mat PET fiber composites as a function of fiber rate and length showed that the 5 and 8 phr composites for the 15-mm length PET fiber have the optimal mechanical properties 13.55 and 10.50 Kj/m2, respectively. The morphological study showed that the strong adhesion resulting from the affinity of the PET fiber for the UPR matrix. The ductile fracture of materials reinforced with 5 and 8 phr is confirmed by the fiber deformation and fracture surface roughness.

Findings

This study concluded that the PET fiber enhances the properties of composites, a good correlation was observed between the results of the mechanical tests and the structural analysis revealing that for the lower concentrations, the PET fibers are well dispersed into the resin, but entanglements are evidenced when the fiber content increases.

Originality/value

It can be shown from scanning electron microscopy micrographs that the fabrication technique produced composites with good interfacial adhesion between PET fibers and UPR matrix.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 January 2024

Zhenkun Li, Zhili Zhao, Jinliang Liu and Xin Ding

To solve the problems caused by using precise molds for copper column positioning in the current column grid array package, this paper aims to optimize the proposed friction…

Abstract

Purpose

To solve the problems caused by using precise molds for copper column positioning in the current column grid array package, this paper aims to optimize the proposed friction plunge micro-welding (FPMW) technology without mold assistance, to overcome the problems of low interfacial bonding strength, shrinkage cavities and flash defects caused by the low hold-tight force of solder on the copper column.

Design/methodology/approach

A pressurizing device installed under the drill chuck of the friction welding machine is designed, which is used to apply a static constraint to the solder ball obliquely downward to increase the hold-tight force of the peripheral solder on the copper column during welding and promote the friction metallurgical connection between them.

Findings

The results show that the application of static constraint during welding can increase the compactness of the solder near the friction interface and effectively inhibit occurrences of flash, shrinkage cavities and crystal defects such as vacancies. Therefore, compared with the unconstrained (UC) FPMW, the average strength of the statically constrained (SC) FPMW joints and aged SC-FPMW joints can be increased by 51.1% and 122.6%, and the problem of the excessive growth of the interfacial connection layer in the UC-FPMW joints during aging can be effectively avoided.

Originality/value

The application of static constraint effectively inhibits the occurrence of defects such as shrinkage cavities, vacancies and flash in FPMW joints, and the welding quality is significantly improved.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 21 December 2023

Nagat Zalhaf, Mariam Ghazy, Metwali Abdelatty and Mohamed Hamed Zakaria

Even though it is widely used, reinforced concrete (RC) is susceptible to damage from various environmental factors. The hazard of a fire attack is particularly severe because it…

Abstract

Purpose

Even though it is widely used, reinforced concrete (RC) is susceptible to damage from various environmental factors. The hazard of a fire attack is particularly severe because it may cause the whole structure to collapse. Furthermore, repairing and strengthening existing structures with high-performance concrete (HPC) has become essential from both technical and financial points of view. In particular, studying the postfire behavior of HPC with normal strength concrete substrate requires experimental and numerical investigations. Accordingly, this study aims to numerically investigate the post-fire behavior of reinforced composite RC slabs.

Design/methodology/approach

Consequently, in this study, a numerical analysis was carried out to ascertain the flexural behavior of simply supported RC slabs strengthened with HPC and exposed to a particularly high temperature of 600°C for 2 h. This behavior was investigated and analyzed in the presence of a number of parameters, such as HPC types (fiber-reinforced, 0.5% steel, polypropylene fibers [PPF], hybrid fibers), strengthening side (tension or compression), strengthening layer thickness, slab thickness, boundary conditions, reinforcement ratio and yield strength of reinforcement.

Findings

The results showed that traction-separation and full-bond models can achieve accuracy compared with experimental results. Also, the fiber type significantly affects the postfire performance of RC slab strengthened with HPC, where the inclusion of hybrid fiber recorded the highest ultimate load. While adding PPF to HPC showed a rapid decrease in the load-deflection curve after reaching the ultimate load.

Originality/value

The proposed model accurately predicted the thermomechanical behavior of RC slabs strengthened with HPC after being exposed to the fire regarding load-deflection response, crack pattern and failure mode. Moreover, the considered independent parametric variables significantly affect the composite slabs’ behavior.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 February 2024

Kai Deng, Liang Zhang, Chen Chen, Xiao Lu, Lei Sun and Xing-Yu Guo

This study aims to explore the feasibility of adding Si3N4 nanoparticles to Sn58Bi and provides a theoretical basis for designing and applying new lead-free solder materials for…

Abstract

Purpose

This study aims to explore the feasibility of adding Si3N4 nanoparticles to Sn58Bi and provides a theoretical basis for designing and applying new lead-free solder materials for the electronic packaging industry.

Design/methodology/approach

In this paper, Sn58Bi-xSi3N4 (x = 0, 0.2, 0.4, 0.6, 0.8, 1.0 Wt.%) was prepared for bonding Cu substrate, and the changes in thermal properties, wettability, microstructure, interfacial intermetallic compound and mechanical properties of the composite solder were systematically studied.

Findings

The experiment results demonstrate that including Si3N4 nanoparticles does not significantly impact the melting point of Sn58Bi solder, and the undercooling degree of solder only fluctuates slightly. The molten solder spreading area reached a maximum of 96.17 mm2, raised by 19.41% relative to those without Si3N4, and the wetting angle was the smallest at 0.6 Wt.% of Si3N4, with a minimum value of 8.35°. When the Si3N4 nanoparticles reach 0.6 Wt.%, the solder joint microstructure is significantly refined. Appropriately adding Si3N4 nanoparticles will slightly increase the solder alloy hardness. When the concentration of Si3N4 reaches 0.6 Wt.%, the joints shear strength reached 45.30 MPa, representing a 49.85% increase compared to those without additives. A thorough examination indicates that legitimately incorporating Si3N4 nanoparticles into Sn58Bi solder can enhance its synthetical performance, and 0.6 Wt.% is the best addition amount in our test setting.

Originality/value

In this paper, Si3N4 nanoparticles were incorporated into Sn58Bi solder, and the effects of different contents of Si3N4 nanoparticles on Sn58Bi solder were investigated from various aspects.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 4 January 2024

Ernest Mbamalu Ezeh, Ezeamaku U Luvia and Onukwuli O D

Gourd fibres (GF) are a natural biodegradable fibre material with excellent mechanical properties and high tensile strength. The use of natural fibres in composite materials has…

Abstract

Purpose

Gourd fibres (GF) are a natural biodegradable fibre material with excellent mechanical properties and high tensile strength. The use of natural fibres in composite materials has gained popularity in recent years due to their various advantages, including renewability, low cost, low density and biodegradability. Gourd fibre is one such natural fibre that has been identified as a potential reinforcement material for composites. However, it has low surface energy and hydrophobic nature, which makes it difficult to bond with matrix materials such as polyester. To overcome this problem, chemically adapted gourd fibre has been proposed as a solution. Chemical treatment is one of the most widely used methods to improve the properties of natural fibres. This research evaluates the feasibility and effectiveness of incorporating chemically adapted gourd fibre into polyester composites for industrial fabrication. The purpose of this study is to examine the application of chemically modified GF in the production of polyester composite engineering materials.

Design/methodology/approach

This work aims to evaluate the effectiveness of chemically adapted gourd fibre in improving the adhesion of gourd fibre with polyester resin in composite fabrication by varying the GF from 5 to 20 wt.%. The study involves the preparation of chemically treated gourd fibre through surface modification using sodium hydroxide (NaOH), permanganate (KMnO4) and acetic acid (CH3COOH) coupling agents. The mechanical properties of the modified fibre and composites were investigated. It was then characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) to determine the changes in surface morphology and functional groups.

Findings

FTIR characterization showed that NaOH treatment caused cellulose depolymerization and caused a significant increase in the hydroxyl and carboxyl groups, showing improved surface functional groups; KMnO4 treatment oxidized the fibre surface and caused the formation of surface oxide groups; and acetic acid treatment induced changes that primarily affected the ester and hydroxyl groups. SEM study showed that NaOH treatment changed the surface morphology of the gourd fibre, introduced voids and reduced hydrophilic tendencies. The tensile strength of the modified gourd fibres increased progressively as the concentration of the modification chemicals increased compared to the untreated fibres.

Originality/value

This work presents the designed composite with density, mechanical properties and microstructure, showing remarkable improvements in the engineering properties. An 181.5% improvement in tensile strength and a 56.63% increase in flexural strength were got over that of the unreinforced polyester. The findings from this work will contribute to the understanding of the potential of chemically adapted gourd fibre as a reinforcement material for composites and provide insights into the development of sustainable composite materials.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 July 2023

Upendra S. Gupta, Sudhir Tiwari and Uttam Sharma

The incompatibility of natural fibers with polymer matrices is one of the key obstacles restricting their use in polymer composites. The interfacial connection between the fibers…

Abstract

Purpose

The incompatibility of natural fibers with polymer matrices is one of the key obstacles restricting their use in polymer composites. The interfacial connection between the fibers and the matrix was weak resulting in a lack of mechanical properties in the composites. Chemical treatments are often used to change the surface features of plant fibers, yet these treatments have significant drawbacks such as using substantial amounts of liquid and chemicals. Plasma modification has recently become very popular as a viable option as it is easy, dry, ecologically friendly, time-saving and reduces energy consumption. This paper aims to explore plasma treatment for improving the surface adhesion characteristics of sisal fibers (SFs) without compromising the mechanical attributes of the fiber.

Design/methodology/approach

A cold glow discharge plasma (CGDP) modification using N2 gas at varied power densities of 80 W and 120 W for 0.5 h was conducted to improve the surface morphology and interfacial compatibility of SF. The mechanical characteristics of unmodified and CGDP-modified SF-reinforced epoxy composite (SFREC) were examined as per the American Society for Testing and Materials standards.

Findings

The cold glow discharge nitrogen plasma treatment of SF at 120 W (30 min) enhanced the SFREC by nearly 122.75% superior interlaminar shear strength, 71.09% greater flexural strength, 84.22% higher tensile strength and 109.74% higher elongation. The combination of improved surface roughness and more effective lignocellulosic exposure has been responsible for the increase in the mechanical characteristics of treated composites. The development of hydrophobicity in the SF had been induced by CGDP N2 modification and enhanced the size of crystals and crystalline structure by removing some unwanted constituents of the SF and etching the smooth lignin-rich surface layer of the SF particularly revealed via FTIR and XRD.

Research limitations/implications

Chemical and physical treatments have been identified as the most efficient ways of treating the fiber surface. However, the huge amounts of liquids and chemicals needed in chemical methods and their exorbitant performance in terms of energy expenditure have limited their applicability in the past decades. The use of appropriate cohesion in addition to stimulating the biopolymer texture without changing its bulk polymer properties leads to the formation and establishment of plasma surface treatments that offer a unified, repeatable, cost-effective and environmentally benign replacement.

Originality/value

The authors are sure that this technology will be adopted by the polymer industry, aerospace, automotive and related sectors in the future.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 April 2024

Hoda Sabry Sabry Othman, Salwa H. El-Sabbagh and Galal A. Nawwar

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when…

Abstract

Purpose

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when incorporated into the nonpolar ethylene propylene diene (EPDFM) rubber matrix, focusing on its reinforcing and antioxidant effect on the resulting EPDM composites.

Design/methodology/approach

The structure of the prepared EPDM composites was confirmed by Fourier-transform infrared spectroscopy, and the dispersion of the additive fillers and antioxidants in the EPDM matrix was investigated using scanning electron microscopy. Also, the rheometric characteristics, mechanical properties, swelling behavior and thermal gravimetric analysis of all the prepared EPDM composites were explored as well.

Findings

Results revealed that the Cu-LSF complex dispersed well in the nonpolar EPDM rubber matrix, in thepresence of coupling system, with enhanced Cu-LSF-rubber interactions and increased cross-linking density, which reflected on the improved rheological and mechanical properties of the resulting EPDM composites. From the various investigations performed in the current study, the authors can suggest 7–11 phr is the optimal effective concentration of Cu-LSF complex loading. Interestingly, EPDM composites containing Cu-LSF complex showed better antiaging performance, thermal stability and fluid resistance, when compared with those containing the commercial antioxidants (2,2,4-trimethyl-1,2-dihydroquinoline and N-isopropyl-N’-phenyl-p-phenylenediamine). These findings are in good agreement with our previous study on polar nitrile butadiene rubber.

Originality/value

The current study suggests the green biomass-derived Cu-LSF complex to be a promising low-cost and environmentally safe alternative filler and antioxidant to the hazardous commercial ones.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 19 June 2023

Mandeep Singh, Khushdeep Goyal and Deepak Bhandari

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of…

Abstract

Purpose

The purpose of this paper is to evaluate the effect of titanium oxide (TiO2) and yttrium oxide (Y2O3) nanoparticles-reinforced pure aluminium (Al) on the mechanical properties of hybrid aluminium matrix nanocomposites (HAMNCs).

Design/methodology/approach

The HAMNCs were fabricated via a vacuum die-assisted stir casting route by a two-step feeding method. The varying weight percentages of TiO2 and Y2O3 nanoparticles were added as 2.5, 5, 7.5 and 10 Wt.%.

Findings

Scanning electron microscope images showed the homogenous dispersion of nanoparticles in Al matrix. The tensile strength by 28.97%, yield strength by 50.60%, compression strength by 104.6% and micro-hardness by 50.90% were improved in HAMNC1 when compared to the base matrix. The highest values impact strength of 36.3 J was observed for HAMNC1. The elongation % was decreased by increasing the weight percentage of the nanoparticles. HAMNC1 improved the wear resistance by 23.68%, while increasing the coefficient of friction by 14.18%. Field emission scanning electron microscope analysis of the fractured surfaces of tensile samples revealed microcracks and the debonding of nanoparticles.

Originality/value

The combined effect of TiO2 and Y2O3 nanoparticles with pure Al on mechanical properties has been studied. The composites were fabricated with two-step feeding vacuum-assisted stir casting.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 41