Search results

1 – 10 of 474
Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 19 February 2024

Steven Alter

The lack of conceptual approaches for organizing and expressing capabilities, usage and impact of intelligent machines (IMs) in work settings is an obstacle to moving beyond…

Abstract

Purpose

The lack of conceptual approaches for organizing and expressing capabilities, usage and impact of intelligent machines (IMs) in work settings is an obstacle to moving beyond isolated case examples, domain-specific studies, 2 × 2 frameworks and expert opinion in discussions of IMs and work. This paper's purpose is to illuminate many issues that often are not addressed directly in research, practice or punditry related to IMs. It pursues that purpose by presenting an integrated approach for identifying and organizing important aspects of analysis and evaluation related to IMs in work settings. 

Design/methodology/approach

This paper integrates previously published ideas related to work systems (WSs), smart devices and systems, facets of work, roles and responsibilities of information systems, interactions between people and machines and a range of criteria for evaluating system performance.

Findings

Eight principles outline a straightforward and flexible approach for analyzing and evaluating IMs and the WSs that use them. Those principles are based on the above ideas.

Originality/value

This paper provides a novel approach for identifying design choices for situated use of IMs. The breadth, depth and integration of this approach address a gap in existing literature, which rarely aspires to this paper’s thoroughness in combining ideas that support the description, analysis, design and evaluation of situated uses of IMs.

Details

Information Technology & People, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 31 January 2024

Zaid Alwashah, Ghaleb J. Sweis, Husam Abu Hajar, Waleed Abu-Khader and Rateb J. Sweis

This study aims to examine the challenges facing the construction industry practitioners toward adopting digital construction technologies in the Jordanian construction industry.

Abstract

Purpose

This study aims to examine the challenges facing the construction industry practitioners toward adopting digital construction technologies in the Jordanian construction industry.

Design/methodology/approach

Quantitative methods were used by reviewing the related literature to include 16 challenges that face the Jordanian construction industry in adopting digital construction. A questionnaire was used to achieve the desired study objectives for 373 respondents from various institutions and companies. The questionnaire was analyzed with SPSS using statistical tests such as mean score, Kruskal–Wallis H test and factor analysis.

Findings

After collecting the quantitative data, the study showed that the most challenges facing construction industry practitioners toward adopting digital construction techniques are lack of qualified workers, high requirement for computing equipment’s, high initial cost of bringing these technologies to the market and construction firms low investment in research and development. These challenges faced by respondents were divided into three main factors, namely, construction’s nature, financial constraints and poor management support.

Originality/value

This study provides information and statistics on the challenges that face individuals or companies toward adopting digital construction techniques in Jordan. It proposes recommendations and proper practical implantation strategies to overcome the challenges.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 2 February 2024

Sumathi Annamalai and Aditi Vasunandan

With Industry 4.0 and the extensive rise of smart technologies, we are seeing remarkable transformations in work practices and workplaces. Scholars report the phenomenal progress…

Abstract

Purpose

With Industry 4.0 and the extensive rise of smart technologies, we are seeing remarkable transformations in work practices and workplaces. Scholars report the phenomenal progress of smart technologies. At the same time, we can hear the rhetoric emphasising their potential threats. This study focusses on how and where intelligent machines are leveraged in the workplace, how humans co-working with intelligent machines are affected and what they believe can be done to mitigate the risks of the increased use of intelligent machines.

Design/methodology/approach

We conducted in-depth interviews with 15 respondents working in various leadership capacities associated with intelligent machines and technologies. Using NVivo, we coded and churned out the themes from the qualitative data collected.

Findings

This study shows how intelligent machines are leveraged across different industries, ranging from chatbots, intelligent sensors, cognitive systems and computer vision to the replica of the entire human being. They are used end-to-end in the value chain, increasing productivity, complementing human workers’ skillsets and augmenting decisions made by human workers. Human workers experience a blend of positive and negative emotions whilst co-working with intelligent machines, which influences their job satisfaction level. Organisations adopt several anticipatory strategies, like transforming into a learning organisation, identifying futuristic technologies and upskilling their human workers, regularly conducting social learning events and designing accelerated career paths to embrace intelligent technologies.

Originality/value

This study seeks to understand the emotional and practical implications of the use of intelligent machines by humans and how both entities can integrate and complement each other. These insights can help organisations and employees understand what future workplaces and practices will look like and how to remain relevant in this transformation.

Details

Central European Management Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2658-0845

Keywords

Article
Publication date: 29 November 2023

Rupinder Singh, Gurwinder Singh and Arun Anand

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an…

Abstract

Purpose

The purpose of this paper is to design and manufacture an intelligent 3D printed sensor to monitor the re-occurrence of diaphragmatic hernia (DH; after surgery) in bovines as an Internet of Things (IOT)-based solution.

Design/methodology/approach

The approach used in this study is based on a bibliographic analysis for the re-occurrence of DH in the bovine after surgery. Using SolidWorks and ANSYS, the computer-aided design model of the implant was 3D printed based on literature and discussions on surgical techniques with a veterinarian. To ensure the error-proof design, load test and strain–stress rate analyses with boundary distortion have been carried out for the implant sub-assembly.

Findings

An innovative IOT-based additive manufacturing solution has been presented for the construction of a mesh-type sensor (for the health monitoring of bovine after surgery).

Originality/value

An innovative mesh-type sensor has been fabricated by integration of metal and polymer 3D printing (comprising 17–4 precipitate hardened stainless steel and polyvinylidene fluoride-hydroxyapatite-chitosan) without sacrificing strength and specific absorption ratio value.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 March 2024

Xiaohui Li, Dongfang Fan, Yi Deng, Yu Lei and Owen Omalley

This study aims to offer a comprehensive exploration of the potential and challenges associated with sensor fusion-based virtual reality (VR) applications in the context of…

Abstract

Purpose

This study aims to offer a comprehensive exploration of the potential and challenges associated with sensor fusion-based virtual reality (VR) applications in the context of enhanced physical training. The main objective is to identify key advancements in sensor fusion technology, evaluate its application in VR systems and understand its impact on physical training.

Design/methodology/approach

The research initiates by providing context to the physical training environment in today’s technology-driven world, followed by an in-depth overview of VR. This overview includes a concise discussion on the advancements in sensor fusion technology and its application in VR systems for physical training. A systematic review of literature then follows, examining VR’s application in various facets of physical training: from exercise, skill development and technique enhancement to injury prevention, rehabilitation and psychological preparation.

Findings

Sensor fusion-based VR presents tangible advantages in the sphere of physical training, offering immersive experiences that could redefine traditional training methodologies. While the advantages are evident in domains such as exercise optimization, skill acquisition and mental preparation, challenges persist. The current research suggests there is a need for further studies to address these limitations to fully harness VR’s potential in physical training.

Originality/value

The integration of sensor fusion technology with VR in the domain of physical training remains a rapidly evolving field. Highlighting the advancements and challenges, this review makes a significant contribution by addressing gaps in knowledge and offering directions for future research.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 16 January 2023

Faisal Lone, Harsh Kumar Verma and Krishna Pal Sharma

The purpose of this study is to extensively explore the vehicular network paradigm, challenges faced by them and provide a reasonable solution for securing these vulnerable…

Abstract

Purpose

The purpose of this study is to extensively explore the vehicular network paradigm, challenges faced by them and provide a reasonable solution for securing these vulnerable networks. Vehicle-to-everything (V2X) communication has brought the long-anticipated goal of safe, convenient and sustainable transportation closer to reality. The connected vehicle (CV) paradigm is critical to the intelligent transportation systems vision. It imagines a society free of a troublesome transportation system burdened by gridlock, fatal accidents and a polluted environment. The authors cannot overstate the importance of CVs in solving long-standing mobility issues and making travel safer and more convenient. It is high time to explore vehicular networks in detail to suggest solutions to the challenges encountered by these highly dynamic networks.

Design/methodology/approach

This paper compiles research on various V2X topics, from a comprehensive overview of V2X networks to their unique characteristics and challenges. In doing so, the authors identify multiple issues encountered by V2X communication networks due to their open communication nature and high mobility, especially from a security perspective. Thus, this paper proposes a trust-based model to secure vehicular networks. The proposed approach uses the communicating nodes’ behavior to establish trustworthy relationships. The proposed model only allows trusted nodes to communicate among themselves while isolating malicious nodes to achieve secure communication.

Findings

Despite the benefits offered by V2X networks, they have associated challenges. As the number of CVs on the roads increase, so does the attack surface. Connected cars provide numerous safety-critical applications that, if compromised, can result in fatal consequences. While cryptographic mechanisms effectively prevent external attacks, various studies propose trust-based models to complement cryptographic solutions for dealing with internal attacks. While numerous trust-based models have been proposed, there is room for improvement in malicious node detection and complexity. Optimizing the number of nodes considered in trust calculation can reduce the complexity of state-of-the-art solutions. The theoretical analysis of the proposed model exhibits an improvement in trust calculation, better malicious node detection and fewer computations.

Originality/value

The proposed model is the first to add another dimension to trust calculation by incorporating opinions about recommender nodes. The added dimension improves the trust calculation resulting in better performance in thwarting attacks and enhancing security while also reducing the trust calculation complexity.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 18 March 2024

Nuno Miguel de Matos Torre and Andrei Bonamigo

Maintenance represents an indispensable role in the productive sector of the steel industry. The increasing use of operating with a high level of precision makes hydraulic systems…

Abstract

Purpose

Maintenance represents an indispensable role in the productive sector of the steel industry. The increasing use of operating with a high level of precision makes hydraulic systems one of the issues that require a high level of attention. This study aims to explore an empirical investigation for decreasing the occurrences of corrective maintenance of hydraulic systems in the context of Lean 4.0.

Design/methodology/approach

The maintenance model is developed based on action-research methodology through an empirical investigation, with nine stages. This approach aims to build a scenario to analyze and interpret the occurrences, seeking to implement and evaluate the actions to be performed. The undertaken initiatives demonstrate that this approach can be applied to optimize the maintenance of an organization.

Findings

The main contribution of this paper is to demonstrate that the applied method allows the overviewing results, with a qualitative approach concerning the maintenance actions and management processes to be considered, allowing a holistic understanding and contributing to the current literature. The results also indicated that Lean 4.0 has direct and mediating effects on maintenance performance.

Originality/value

This research intends to propose an evaluation framework with an interdimensional linkage between action research methodology and Lean 4.0, to explore an empirical investigation and contributing to understanding the actions to reduce the occurrences of hydraulic systems corrective maintenance in a production line in the steel industry.

Details

Journal of Quality in Maintenance Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 24 October 2022

Priyanka Chawla, Rutuja Hasurkar, Chaithanya Reddy Bogadi, Naga Sindhu Korlapati, Rajasree Rajendran, Sindu Ravichandran, Sai Chaitanya Tolem and Jerry Zeyu Gao

The study aims to propose an intelligent real-time traffic model to address the traffic congestion problem. The proposed model assists the urban population in their everyday lives…

Abstract

Purpose

The study aims to propose an intelligent real-time traffic model to address the traffic congestion problem. The proposed model assists the urban population in their everyday lives by assessing the probability of road accidents and accurate traffic information prediction. It also helps in reducing overall carbon dioxide emissions in the environment and assists the urban population in their everyday lives by increasing overall transportation quality.

Design/methodology/approach

This study offered a real-time traffic model based on the analysis of numerous sensor data. Real-time traffic prediction systems can identify and visualize current traffic conditions on a particular lane. The proposed model incorporated data from road sensors as well as a variety of other sources. It is difficult to capture and process large amounts of sensor data in real time. Sensor data is consumed by streaming analytics platforms that use big data technologies, which is then processed using a range of deep learning and machine learning techniques.

Findings

The study provided in this paper would fill a gap in the data analytics sector by delivering a more accurate and trustworthy model that uses internet of things sensor data and other data sources. This method can also assist organizations such as transit agencies and public safety departments in making strategic decisions by incorporating it into their platforms.

Research limitations/implications

The model has a big flaw in that it makes predictions for the period following January 2020 that are not particularly accurate. This, however, is not a flaw in the model; rather, it is a flaw in Covid-19, the global epidemic. The global pandemic has impacted the traffic scenario, resulting in erratic data for the period after February 2020. However, once the circumstance returns to normal, the authors are confident in their model’s ability to produce accurate forecasts.

Practical implications

To help users choose when to go, this study intended to pinpoint the causes of traffic congestion on the highways in the Bay Area as well as forecast real-time traffic speeds. To determine the best attributes that influence traffic speed in this study, the authors obtained data from the Caltrans performance measurement system (PeMS), reviewed it and used multiple models. The authors developed a model that can forecast traffic speed while accounting for outside variables like weather and incident data, with decent accuracy and generalizability. To assist users in determining traffic congestion at a certain location on a specific day, the forecast method uses a graphical user interface. This user interface has been designed to be readily expanded in the future as the project’s scope and usefulness increase. The authors’ Web-based traffic speed prediction platform is useful for both municipal planners and individual travellers. The authors were able to get excellent results by using five years of data (2015–2019) to train the models and forecast outcomes for 2020 data. The authors’ algorithm produced highly accurate predictions when tested using data from January 2020. The benefits of this model include accurate traffic speed forecasts for California’s four main freeways (Freeway 101, I-680, 880 and 280) for a specific place on a certain date. The scalable model performs better than the vast majority of earlier models created by other scholars in the field. The government would benefit from better planning and execution of new transportation projects if this programme were to be extended across the entire state of California. This initiative could be expanded to include the full state of California, assisting the government in better planning and implementing new transportation projects.

Social implications

To estimate traffic congestion, the proposed model takes into account a variety of data sources, including weather and incident data. According to traffic congestion statistics, “bottlenecks” account for 40% of traffic congestion, “traffic incidents” account for 25% and “work zones” account for 10% (Traffic Congestion Statistics). As a result, incident data must be considered for analysis. The study uses traffic, weather and event data from the previous five years to estimate traffic congestion in any given area. As a result, the results predicted by the proposed model would be more accurate, and commuters who need to schedule ahead of time for work would benefit greatly.

Originality/value

The proposed work allows the user to choose the optimum time and mode of transportation for them. The underlying idea behind this model is that if a car spends more time on the road, it will cause traffic congestion. The proposed system encourages users to arrive at their location in a short period of time. Congestion is an indicator that public transportation needs to be expanded. The optimum route is compared to other kinds of public transit using this methodology (Greenfield, 2014). If the commute time is comparable to that of private car transportation during peak hours, consumers should take public transportation.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 March 2024

Gülçin Baysal

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Abstract

Purpose

The aim of this review is to present together the studies on textile-based moisture sensors developed using innovative technologies in recent years.

Design/methodology/approach

The integration levels of the sensors studied with the textile materials are changing. Some research teams have used a combination of printing and textile technologies to produce sensors, while a group of researchers have used traditional technologies such as weaving and embroidery. Others have taken advantage of new technologies such as electro-spinning, polymerization and other techniques. In this way, they tried to combine the good working efficiency of the sensors and the flexibility of the textile. All these approaches are presented in this article.

Findings

The presentation of the latest technologies used to develop textile sensors together will give researchers an idea about new studies that can be done on highly sensitive and efficient textile-based moisture sensor systems.

Originality/value

In this paper humidity sensors have been explained in terms of measuring principle as capacitive and resistive. Then, studies conducted in the last 20 years on the textile-based humidity sensors have been presented in detail. This is a comprehensive review study that presents the latest developments together in this area for researchers.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 474