Search results

1 – 10 of 413
Article
Publication date: 8 April 2014

Jiyoung Hwang and Linda Good

– The aim of this paper is to investigate the role of consumer characteristics and information in explaining their shopping intention regarding intelligent sensor-based services.

1006

Abstract

Purpose

The aim of this paper is to investigate the role of consumer characteristics and information in explaining their shopping intention regarding intelligent sensor-based services.

Design/methodology/approach

This study uses scenario-based experiments with the US consumers, in the context of retailers offering radio frequency identification (RFID)-based services. A post-hoc focus group interview was conducted to gain indepth insights into the study findings.

Findings

Consumers' optimistic attitude toward innovative technologies was highly influential to their shopping intention regardless of the information message valence. The role of discomfort toward innovative technologies is mixed. Contrary to the prediction, when consumers received negative information about RFID-based services, their prior knowledge of innovative technologies increased their shopping intention. Sub-dimensions of privacy concerns had differential impacts depending on the information content. Also, the negativity effect of information about RFID-based services was supported.

Research limitations/implications

The results showed the important role of consumer characteristics and information together, in regard to consumers' intention to shop. The specific context, RFID-based services, has been rarely studied with consumer perspectives despite the prediction of increasing item-level adoption by retailers.

Practical implications

Companies should understand their target consumers particularly regarding optimistic attitude toward and knowledge of innovative technology for improved consumers' reactions to intelligent sensor-based services like RFID.

Originality/value

As one of the few empirical studies on intelligent sensor-based services, this study provides important insights into the roles of consumer traits and communication about intelligent sensor-based services with consumers, in order for companies to fully harness innovative service offerings.

Details

European Journal of Marketing, vol. 48 no. 3/4
Type: Research Article
ISSN: 0309-0566

Keywords

Article
Publication date: 13 July 2015

Gebeyehu Belay Gebremeskel, Chai Yi, Chengliang Wang and Zhongshi He

Behavioral pattern mining for intelligent system such as SmEs sensor data are vitally important in many applications and performance optimizations. Sensor pattern mining (SPM) is…

Abstract

Purpose

Behavioral pattern mining for intelligent system such as SmEs sensor data are vitally important in many applications and performance optimizations. Sensor pattern mining (SPM) is also dynamic and a hot research issue to pervasive and ubiquitous of smart technologies toward improving human life. However, in large-scale sensor data, exploring and mining pattern, which leads to detect the abnormal behavior is challenging. The paper aims to discuss these issues.

Design/methodology/approach

Sensor data are complex and multivariate, for example, which data captured by the sensors, how it is precise, what properties are recorded or measured, are important research issues. Therefore, the method, the authors proposed Sequential Data Mining (SDM) approach to explore pattern behaviors toward detecting abnormal patterns for smart space fault diagnosis and performance optimization in the intelligent world. Sensor data types, modeling, descriptions and SPM techniques are discussed in depth using real sensor data sets.

Findings

The outcome of the paper is measured as introducing a novel idea how SDM technique’s scale-up to sensor data pattern mining. In the paper, the approach and technicality of the sensor data pattern analyzed, and finally the pattern behaviors detected or segmented as normal and abnormal patterns.

Originality/value

The paper is focussed on sensor data behavioral patterns for fault diagnosis and performance optimizations. It is other ways of knowledge extraction from the anomaly of sensor data (observation records), which is pertinent to adopt in many intelligent systems applications, including safety and security, efficiency, and other advantages as the consideration of the real-world problems.

Details

Industrial Management & Data Systems, vol. 115 no. 6
Type: Research Article
ISSN: 0263-5577

Keywords

Article
Publication date: 21 January 2021

Mojtaba Valinejadshoubi, Osama Moselhi and Ashutosh Bagchi

To mitigate the problems in sensor-based facility management (FM) such as lack of detailed visual information about a built facility and the maintenance of large scale sensor…

1230

Abstract

Purpose

To mitigate the problems in sensor-based facility management (FM) such as lack of detailed visual information about a built facility and the maintenance of large scale sensor deployments, an integrated data source for the facility’s life cycle should be used. Building information modeling (BIM) provides a useful visual model and database that can be used as a repository for all data captured or made during the facility’s life cycle. It can be used for modeling the sensing-based system for data collection, serving as a source of all information for smart objects such as the sensors used for that purpose. Although few studies have been conducted in integrating BIM with sensor-based monitoring system, providing an integrated platform using BIM for improving the communication between FMs and Internet of Things (IoT) companies in cases encountered failed sensors has received the least attention in the technical literature. Therefore, the purpose of this paper is to conceptualize and develop a BIM-based system architecture for fault detection and alert generation for malfunctioning FM sensors in smart IoT environments during the operational phase of a building to ensure minimal disruption to monitoring services.

Design/methodology/approach

This paper describes an attempt to examine the applicability of BIM for an efficient sensor failure management system in smart IoT environments during the operational phase of a building. For this purpose, a seven-story office building with four typical types of FM-related sensors with all associated parameters was modeled in a commercial BIM platform. An integrated workflow was developed in Dynamo, a visual programming tool, to integrate the associated sensors maintenance-related information to a cloud-based tool to provide a fast and efficient communication platform between the building facility manager and IoT companies for intelligent sensor management.

Findings

The information within BIM allows better and more effective decision-making for building facility managers. Integrating building and sensors information within BIM to a cloud-based system can facilitate better communication between the building facility manager and IoT company for an effective IoT system maintenance. Using a developed integrated workflow (including three specifically designed modules) in Dynamo, a visual programming tool, the system was able to automatically extract and send all essential information such as the type of failed sensors as well as their model and location to IoT companies in the event of sensor failure using a cloud database that is effective for the timely maintenance and replacement of sensors. The system developed in this study was implemented, and its capabilities were illustrated through a case study. The use of the developed system can help facility managers in taking timely actions in the event of any sensor failure and/or malfunction to ensure minimal disruption to monitoring services.

Research limitations/implications

However, there are some limitations in this work which are as follows: while the present study demonstrates the feasibility of using BIM in the maintenance planning of monitoring systems in the building, the developed workflow can be expanded by integrating some type of sensors like an occupancy sensor to the developed workflow to automatically record and identify the number of occupants (visitors) to prioritize the maintenance work; and the developed workflow can be integrated with the sensors’ data and some machine learning techniques to automatically identify the sensors’ malfunction and update the BIM model accordingly.

Practical implications

Transferring the related information such as the room location, occupancy status, number of occupants, type and model of the sensor, sensor ID and required action from the BIM model to the cloud would be extremely helpful to the IoT companies to actually visualize workspaces in advance, and to plan for timely and effective decision-making without any physical inspection, and to support maintenance planning decisions, such as prioritizing maintenance works by considering different factors such as the importance of spaces and number of occupancies. The developed framework is also beneficial for preventive maintenance works. The system can be set up according to the maintenance and time-based expiration schedules, automatically sharing alerts with FMs and IoT maintenance contractors in advance about the IoT parts replacement. For effective predictive maintenance planning, machine learning techniques can be integrated into the developed workflow to efficiently predict the future condition of individual IoT components such as data loggers and sensors, etc. as well as MEP components.

Originality/value

Lack of detailed visual information about a built facility can be a reason behind the inefficient management of a facility. Detecting and repairing failed sensors at the earliest possible time is critical to ensure the functional continuity of the monitoring systems. On the other hand, the maintenance of large-scale sensor deployments becomes a significant challenge. Despite its importance, few studies have been conducted in integrating BIM with a sensor-based monitoring system, providing an integrated platform using BIM for improving the communication between facility managers and IoT companies in cases encountered failed sensors. In this paper, a cloud-based BIM platform was developed for the maintenance and timely replacement of sensors which are critical to ensure minimal disruption to monitoring services in sensor-based FM.

Details

Journal of Facilities Management , vol. 20 no. 3
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 12 January 2024

Ali Rashidi, George Lukic Woon, Miyami Dasandara, Mohsen Bazghaleh and Pooria Pasbakhsh

The construction industry remains one of the most hazardous industries worldwide, with a higher number of fatalities and injuries each year. The safety and well-being of workers…

Abstract

Purpose

The construction industry remains one of the most hazardous industries worldwide, with a higher number of fatalities and injuries each year. The safety and well-being of workers at a job site are paramount as they face both immediate and long-term risks such as falls and musculoskeletal disorders. To mitigate these dangers, sensor-based technologies have emerged as a crucial tool to promote the safety and well-being of workers on site. The implementation of real-time sensor data-driven monitoring tools can greatly benefit the construction industry by enabling the early identification and prevention of potential construction accidents. This study aims to explore the innovative method of prototype development regarding a safety monitoring system in the form of smart personal protective equipment (PPE) by taking advantage of the recent advances in wearable technology and cloud computing.

Design/methodology/approach

The proposed smart construction safety system has been meticulously crafted to seamlessly integrate with conventional safety gear, such as gloves and vests, to continuously monitor construction sites for potential hazards. This state-of-the-art system is primarily geared towards mitigating musculoskeletal disorders and preventing workers from inadvertently entering high-risk zones where falls or exposure to extreme temperatures could occur. The wearables were introduced through the proposed system in a non-intrusive manner where the safety vest and gloves were chosen as the base for the PPE as almost every construction worker would be required to wear them on site. Sensors were integrated into the PPE, and a smartphone application which is called SOTER was developed to view and interact with collected data. This study discusses the method and process of smart PPE system design and development process in software and hardware aspects.

Findings

This research study posits a smart system for PPE that utilises real-time sensor data collection to improve worksite safety and promote worker well-being. The study outlines the development process of a prototype that records crucial real-time data such as worker location, altitude, temperature and hand pressure while handling various construction objects. The collected data are automatically uploaded to a cloud service, allowing supervisors to monitor it through a user-friendly smartphone application. The worker tracking ability with the smart PPE can help to alleviate the identified issues by functioning as an active warning system to the construction safety management team. It is steadily evident that the proposed smart PPE system can be utilised by the respective industry practitioners to ensure the workers' safety and well-being at construction sites through monitoring of the workers with real-time sensor data.

Originality/value

The proposed smart PPE system assists in reducing the safety risks posed by hazardous environments as well as preventing a certain degree of musculoskeletal problems for workers. Ultimately, the current study unveils that the construction industry can utilise cloud computing services in conjunction with smart PPE to take advantage of the recent advances in novel technological avenues and bring construction safety management to a new level. The study significantly contributes to the prevailing knowledge of construction safety management in terms of applying sensor-based technologies in upskilling construction workers' safety in terms of real-time safety monitoring and safety knowledge sharing.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 17 March 2014

David Robinson, David Adrian Sanders and Ebrahim Mazharsolook

– This paper aims to describe research work to create an innovative, and intelligent solution for energy efficiency optimisation.

Abstract

Purpose

This paper aims to describe research work to create an innovative, and intelligent solution for energy efficiency optimisation.

Design/methodology/approach

A novel approach is taken to energy consumption monitoring by using ambient intelligence (AmI), extended data sets and knowledge management (KM) technologies. These are combined to create a decision support system as an innovative add-on to currently used energy management systems. Standard energy consumption data are complemented by information from AmI systems from both environment-ambient and process ambient sources and processed within a service-oriented-architecture-based platform. The new platform allows for building of different energy efficiency software services using measured and processed data. Four were selected for the system prototypes: condition-based energy consumption warning, online diagnostics of energy-related problems, support to manufacturing process lines installation and ramp-up phase, and continuous improvement/optimisation of energy efficiency.

Findings

An innovative and intelligent solution for energy efficiency optimisation is demonstrated in two typical manufacturing companies, within one case study. Energy efficiency is improved and the novel approach using AmI with KM technologies is shown to work well as an add-on to currently used energy management systems.

Research limitations/implications

The decision support systems are only at the prototype stage. These systems improved on existing energy management systems. The system functionalities have only been trialled in two manufacturing companies (the one case study is described).

Practical implications

A decision support system has been created as an innovative add-on to currently used energy management systems and energy efficiency software services are developed as the front end of the system. Energy efficiency is improved.

Originality/value

For the first time, research work has moved into industry to optimise energy efficiency using AmI, extended data sets and KM technologies. An AmI monitoring system for energy consumption is presented that is intended for use in manufacturing companies to provide comprehensive information about energy use, and knowledge-based support for improvements in energy efficiency. The services interactively provide suggestions for appropriate actions for energy problem elimination and energy efficiency increase. The system functionalities were trialled in two typical manufacturing companies, within one case study described in the paper.

Details

Sensor Review, vol. 34 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 21 February 2024

Amruta Rout, Golak Bihari Mahanta, Bibhuti Bhusan Biswal, Renin Francy T., Sri Vardhan Raj and Deepak B.B.V.L.

The purpose of this study is to plan and develop a cost-effective health-care robot for assisting and observing the patients in an accurate and effective way during pandemic…

91

Abstract

Purpose

The purpose of this study is to plan and develop a cost-effective health-care robot for assisting and observing the patients in an accurate and effective way during pandemic situation like COVID-19. The purposed research work can help in better management of pandemic situations in rural areas as well as developing countries where medical facility is not easily available.

Design/methodology/approach

It becomes very difficult for the medical staff to have a continuous check on patient’s condition in terms of symptoms and critical parameters during pandemic situations. For dealing with these situations, a service mobile robot with multiple sensors for measuring patients bodily indicators has been proposed and the prototype for the same has been developed that can monitor and aid the patient using the robotic arm. The fuzzy controller has also been incorporated with the mobile robot through which decisions on patient monitoring can be taken automatically. Mamdani implication method has been utilized for formulating mathematical expression of M number of “if and then condition based rules” with defined input Xj (j = 1, 2, ………. s), and output yi. The inputs and output variables are formed by the membership functions µAij(xj) and µCi(yi) to execute the Fuzzy Inference System controller. Here, Aij and Ci are the developed fuzzy sets.

Findings

The fuzzy-based prediction model has been tested with the output of medicines for the initial 27 runs and was validated by the correlation of predicted and actual values. The correlation coefficient has been found to be 0.989 with a mean square error value of 0.000174, signifying a strong relationship between the predicted values and the actual values. The proposed research work can handle multiple tasks like online consulting, continuous patient condition monitoring in general wards and ICUs, telemedicine services, hospital waste disposal and providing service to patients at regular time intervals.

Originality/value

The novelty of the proposed research work lies in the integration of artificial intelligence techniques like fuzzy logic with the multi-sensor-based service robot for easy decision-making and continuous patient monitoring in hospitals in rural areas and to reduce the work stress on medical staff during pandemic situation.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 28 August 2007

Hai Chao Li, Hong Ming Gao and Lin Wu

This paper aims to develop a performing approach for telerobotic arc welding in an unstructured environment.

Abstract

Purpose

This paper aims to develop a performing approach for telerobotic arc welding in an unstructured environment.

Design/methodology/approach

A teleteaching approach is presented for an arc welding telerobotic system in an unstructured environment. Improved laser vision sensor enhances the precision of teleteaching welding seam. Stereoscopic vision display system is developed to provide the perception information of remote environment that increased the dexterity of the teleteaching process. Operator interacts with the system by welding multi‐modal human‐machine interface, which integrated the teleteaching operation window, status display window and space mouse.

Findings

The sensor‐based teleteaching approach, which integrated laser vision sensing and stereoscopic vision display, can perform arc welding of most welding seam trajectory in an unstructured environment. The approach releases the payload of human operator and improves adaptability of the arc welding system.

Research limitations/implications

The paper provides the remote welding telerobotic approach that is gentle to most unstructured environments.

Practical implications

The sensor‐based teleteaching approach provides the capability of a telerobotic system used in remote welding field, which can shorten the incident response time and maintenance period of nuclear plants, space and underwater.

Originality/value

This paper introduces the sensor‐based teleteaching concept and performing procedure to be used for remote telerobotic arc welding.

Details

Industrial Robot: An International Journal, vol. 34 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 May 2018

Maximiliane Wilkesmann and Uwe Wilkesmann

The rise of new information and communication technologies forms the cornerstone for the future development of work. The term Industry 4.0 refers to the vision of a fourth…

5985

Abstract

Purpose

The rise of new information and communication technologies forms the cornerstone for the future development of work. The term Industry 4.0 refers to the vision of a fourth industrial revolution that is based on a network of autonomous, self-controlling, self-configuring, knowledge-based, sensor-based and spatially distributed production resources. All in all, different forms of the application of the Industry 4.0 concept can be observed, ranging from autonomous logistic transport systems drawn upon the idea of swarm intelligence to smart knowledge management systems. This paper aims to develop a theoretical framework to analyze different applications of Industry 4.0 on an organizing continuum. The general research questions are: What forms of organizing digitalized work lead to the reproduction of routines, and what forms foster innovation within Industry 4.0? The authors thus analyze the consequences of different forms of organizing work on workers’ perceptions and the results of the working process.

Design/methodology/approach

This paper provides case studies for different stages of the organizing continuum in the context of Industry 4.0. The cases and a further analysis of all 295 funded projects are based on the Platform Industry 4.0 Map, which is part of the Industry 4.0 initiative of the German Federal Ministry of Economic Affairs and Energy and the German Federal Ministry of Education and Research. The consequences for people acting in such organizational and digitally supported structures are discussed.

Findings

A variety of applications of Industry 4.0 can be found. These applications mainly vary in the dimensions of the degree of formalization, the location of control authority, the location of knowledge and the degree of professionalization. At the right side of the organizing continuum, the digitalization organizes a work environment that supports highly qualified humans. They have broad leeway and a high degree of autonomy to design and create innovative forms of digitalization for tomorrow. At the left side of the organizing continuum, Industry 4.0 structures a work environment with narrow leeway, a low degree of autonomy and a top-down structure of control authority predetermined by digital applications. In this case, employees fill the gaps the machines cannot handle.

Research limitations/implications

As the paper focuses on Industry 4.0 developments in Germany, the comparability with regard to other countries is limited. Moreover, the methodological approach is explorative, and broader quantitative verification is required. Specifically, future research could include quantitative methods to investigate the employees’ perspective on Industry 4.0. A comparison of Industry 4.0 applications in different countries would be another interesting option for further research.

Practical implications

This paper shows that applications of Industry 4.0 are currently at a very early stage of development and momentarily organize more routines than innovations. From a practical point of view, professional vocational and academic training will be a key factor for the successful implementation of digitalization in future. A joint venture of industry and educational institutions could be a suitable way to meet the growing demand for qualified employees from the middle to the right-hand of the organizing continuum in the context of Industry 4.0.

Social implications

Industry 4.0 is designed by men, and therefore, humans are responsible for whether the future work situation will be perceived as supportive or as an alienated routine. Therefore, designers of Industry 4.0, as well as politicians and scientists, absolutely must take the underlying outcomes of digitalized work into account and must jointly find socially acceptable solutions.

Originality/value

This paper provides a promising avenue for future research on Industry 4.0 by analyzing the underlying organizational structures of digital systems and their consequences for employees. Moreover, the paper shows how Industry 4.0 should be organized to simply reproduce routines or to support innovation.

Details

VINE Journal of Information and Knowledge Management Systems, vol. 48 no. 2
Type: Research Article
ISSN: 2059-5891

Keywords

Article
Publication date: 30 January 2019

Erika A. Parn, David Edwards, Zainab Riaz, Fahad Mehmood and Joseph Lai

This paper aims to report upon the further development of a hybrid application programming interface (API) plug-in to building information modelling (BIM) entitled confined spaces…

Abstract

Purpose

This paper aims to report upon the further development of a hybrid application programming interface (API) plug-in to building information modelling (BIM) entitled confined spaces safety monitoring system “CoSMoS”. Originally designed to engineer-out environmental hazards associated with working in a building’s confined spaces (during the construction phase of a building’s life-cycle), this second generation version is expanded upon to use archival records to proactively learn from data generated within a sensor network during the building’s operations and maintenance (O&M) phase of asset management (AM).

Design/methodology/approach

An applied research methodological approach adopted used a two-phase process. In phase one, a conceptual model was created to provide a “blueprint map” to integrate BIM, sensor-based networks and data analytics (DA) into one integral system. A literature review provided the basis for the conceptual model’s further development. In phase two, the conceptual model was transposed into the prototype’s development environment as a proof of concept using primary data accrued from a large educational building.

Findings

An amalgamation of BIM, historical sensor data accrued and the application of DA demonstrate that CoSMoS provides an opportunity for the facilities management (FM) team to monitor pertinent environmental conditions and human behaviour within buildings that may impact upon occupant/worker safety. Although working in confined spaces is used to demonstrate the inherent potential of CoSMoS, the system could readily be expanded to analyse sensor-based network’s historical data of other areas of building performance, maintenance and safety.

Originality/value

This novel prototype has automated safety applications for FM during the asset lifecycle and maintenance phase of a building’s O&M phase of AM. Future work is proposed in several key areas, namely, develop instantaneous indicators of current safety performance within a building; and develop lead indicators of future safety performance of buildings.

Article
Publication date: 16 August 2021

Vaidik Bhatt and Samyadip Chakraborty

The purpose of the study was to empirically validate the linkages between IoT adoption and how it overarched influenced the patient care service engagement. This contributes to…

Abstract

Purpose

The purpose of the study was to empirically validate the linkages between IoT adoption and how it overarched influenced the patient care service engagement. This contributes to the body of knowledge and helps hospital managers to understand the relationship and relevance of IoT adoption; otherwise healthcare sector are late movers towards technology adoption. This gives a nuanced framework towards establishing empirically validated framework which will motivate healthcare services providers to be motivated to adopt and implement IoT enabled care delivery. The physician patient interaction and alignment during decision making will foster positive word of mouth, superior care service and reduce extra overheads for healthcare providers without compromise or rather with increment in service delivery proposition.

Design/methodology/approach

The study theoretically and empirically describes that with the adoption of internet of things (IoT) devices in health care, better services can be provided to patients by using partial least square – structure equation modelling-based robust technique and explains the better understanding of the health-care process with the help of information pervasiveness, physician-patient orientation and improved patient and physician involvement in the decision-making process.

Findings

This study shows that wearable IoT device adoption in health-care service delivery opens new opportunities and disrupts the conventional and traditional way of health-care service delivery by empowering the patient to take part in decision-making and enhancing their engagement in health-care service delivery.

Research limitations/implications

The study might influence by generalizability. Perception-based cross-examination knowledge from the patient’s perspective. It is likely that patients who use these devices will grow accustomed to using them and become more capable of using them. Thus, time-series tests have not been used to catch enhanced skills. New patients’ experiences will be altered over time. Regardless, non-response bias and traditional process bias received excessive interest.

Practical implications

The study aims at unravelling how the adoption of IoT enabled practices and usage of IoT devices bolsters the available data points in the context of healthcare especially with respect to patient care delivery. The study conceptualizes and empirically validates how the usage of IoT interface enabled technology enables better patient treatment and caregiver participation. The study puts forth a nuanced understanding regarding how pervasively available ubiquitous care information fosters shared decision making. This study further emphasizes that importance of ensuring a reliable computing environment devoid of privacy and security risks. The study attempts at Emphasizing empirically how the enhanced information pervasiveness catapults the patient-provider interactions, through health data exchange. Highlighting the importance of search feature in cloud storage and recovery mechanisms. The study not only fulfills the overarching linkage between enhanced service engagement with IoT adoption, it provides a mental map and ready to refer framework for hospital and healthcare experts to refer to, which prescribes thar care providers must build new methods aimed at empowerment of patients to participate and take more inclusive role. This unique confluence between patients and physicians will unravel the sync; helping not only avoid costly decision errors, but also improve patient care delivery environment. Patients should be permitted to participate in decision-making,inspire patients to be participatory.

Originality/value

The study efforts to empirically investigate and discover the link between how wearable sensor-based IoT enhances health-care service engagement is underway. Using primary data this linkage validation allows the community and readers at large to gain a nuanced understanding of how superior interaction is enabled by a digital-health-care process with the help of IoT-enabled information pervasiveness, physician-patient orientation and empowered involvement.

Details

Journal of Science and Technology Policy Management, vol. 14 no. 1
Type: Research Article
ISSN: 2053-4620

Keywords

1 – 10 of 413