Search results

1 – 10 of 143
Article
Publication date: 25 April 2024

Long Zhao, Xiaoye Liu, Linxiang Li, Run Guo and Yang Chen

This study aims to realize efficient, fast and safe robot search task, the belief criteria decision-making approach is proposed to solve the object search task with an uncertain…

Abstract

Purpose

This study aims to realize efficient, fast and safe robot search task, the belief criteria decision-making approach is proposed to solve the object search task with an uncertain location.

Design/methodology/approach

The study formulates the robot search task as a partially observable Markov decision process, uses the semantic information to evaluate the belief state and designs the belief criteria decision-making approach. A cost function considering a trade-off among belief state, path length and movement effort is modelled to select the next best location in path planning.

Findings

The semantic information is successfully modelled and propagated, which can represent the belief of finding object. The belief criteria decision-making (BCDM) approach is evaluated in both Gazebo simulation platform and physical experiments. Compared to greedy, uniform and random methods, the performance index of path length and execution time is superior by BCDM approach.

Originality/value

The prior knowledge of robot working environment, especially semantic information, can be used for path planning to achieve efficient task execution in path length and execution time. The modelling and updating of environment information can lead a promising research topic to realize a more intelligent decision-making method for object search task.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 17 August 2023

P.S. JosephNg

This study aims to highlight that security and flexibilities remain the main points of contention in the cordiality business. This research points to planning a framework that…

53

Abstract

Purpose

This study aims to highlight that security and flexibilities remain the main points of contention in the cordiality business. This research points to planning a framework that empowers hotel users to get to the room using a mobile access key. Advancing secured facilities, mobile phone “Near Field Communication” (NFC) innovation as the entrance device by carrying out an application containing an imitated mobile key for explicit verification access is used.

Design/methodology/approach

The proposed system is evaluated by triangulation of experimental, numerical and rational evaluation using partial least square structural equation modeling (PLS-SEM) with Malaysian hotel guests and employees.

Findings

The discoveries with the hypothesis supported validated that the suggested solution can eliminate physical cards, boost protection and encourage a contactless ecosystem. Theoretical, management and societal contributions are discussed here.

Research limitations/implications

This experiment comes with the constraints that it was conducted in only two hotels and does not fully reflect the choices of a wider range of travellers. Secondly, the cost of existing NFC smart locks is still relatively high, and along with the development of technology, the price will decrease when supply exceeds demand.

Practical implications

To promote high-security attributes, NFC technology as the access system by implementing an application containing an emulated smart key for specific authentication access is used. The host-card emulation enables cost-effectiveness profit and initiating a defence system in the pandemic era.

Social implications

To promote high-security attributes, NFC technology is used as the access system by implementing an application containing an emulated smart key for specific authentication access. The host-card emulation enables cost-effectiveness profit and initiating a defence system in the pandemic era.

Originality/value

The novelty of this study comes from the use of commonly available smartphone NFC features that are yet to be applied in the tourism ecosystem. The research provokes the applied concept of mobile smartkeys.

Details

Journal of Science and Technology Policy Management, vol. 15 no. 3
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 25 April 2024

Xu Yang, Xin Yue, Zhenhua Cai and Shengshi Zhong

This paper aims to present a set of processes for obtaining the global spraying trajectory of a cold spraying robot on a complex surface.

Abstract

Purpose

This paper aims to present a set of processes for obtaining the global spraying trajectory of a cold spraying robot on a complex surface.

Design/methodology/approach

The complex workpiece surfaces in the project are first divided by triangular meshing. Then, the geodesic curve method is applied for local path planning. Finally, the subsurface trajectory combination optimization problem is modeled as a GTSP problem and solved by the ant colony algorithm, where the evaluation scores and the uniform design method are used to determine the optimal parameter combination of the algorithm. A global optimized spraying trajectory is thus obtained.

Findings

The simulation results show that the proposed processes can achieve the shortest global spraying trajectory. Moreover, the cold spraying experiment on the IRB4600 six-joint robot verifies that the spraying trajectory obtained by the processes can ensure a uniform coating thickness.

Originality/value

The proposed processes address the issue of different parameter combinations, leading to different results when using the ant colony algorithm. The two methods for obtaining the optimal parameter combinations can solve this problem quickly and effectively, and guarantee that the processes obtain the optimal global spraying trajectory.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 26 April 2024

Yansen Wu, Dongsheng Wen, Anmin Zhao, Haobo Liu and Ke Li

This study aims to study the thermal identification issue by harvesting both solar energy and atmospheric thermal updraft for a solar-powered unmanned aerial vehicle (SUAV) and…

Abstract

Purpose

This study aims to study the thermal identification issue by harvesting both solar energy and atmospheric thermal updraft for a solar-powered unmanned aerial vehicle (SUAV) and its electric energy performance under continuous soaring conditions.

Design/methodology/approach

The authors develop a specific dynamic model for SUAVs in both soaring and cruise modes. The support vector machine regression (SVMR) is adopted to estimate the thermal position, and it is combined with feedback control to implement the SUAV soaring in the updraft. Then, the optimal path model is built based on the graph theory considering the existence of several thermals distributed in the environment. The procedure is proposed to estimate the electricity cost of SUAV during flight as well as soaring, and making use of dynamic programming to maximize electric energy.

Findings

The simulation results present the integrated control method could allow SUAV to soar with the updraft. In addition, the proposed approach allows the SUAV to fly to the destination using distributed thermals while reducing the electric energy use.

Originality/value

Two simplified dynamic models are constructed for simulation considering there are different flight mode. Besides, the data-driven-based SVMR method is proposed to support SUAV soaring. Furthermore, instead of using length, the energy cost coefficient in optimization problem is set as electric power, which is more suitable for SUAV because its advantage is to transfer the three-dimensional path planning problem into the two-dimensional.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 25 April 2024

Da Huo, Rihui Ouyang, Aidi Tang, Wenjia Gu and Zhongyuan Liu

This paper delves into cross-border E-business, unraveling its intricate dynamics and forecasting its future trajectory.

Abstract

Purpose

This paper delves into cross-border E-business, unraveling its intricate dynamics and forecasting its future trajectory.

Design/methodology/approach

This paper projects the prospective market size of cross-border E-business in China for the year 2023 using the GM (1,1) gray forecasting model. Furthermore, to enhance the analysis, the paper attempts to simulate and forecast the size of China’s cross-border E-business sector using the GM (1,3) gray model. This extended model considers not only the historical trends of cross-border E-business but also the growth patterns of GDP and the digital economy.

Findings

The forecast indicates a market size of 18,760 to 18,934 billion RMB in 2023, aligning with the consistent growth observed in previous years. This suggests a sustained positive trajectory for cross-border E-business.

Originality/value

Cross-border e-commerce critically shapes China’s global integration and traditional industry development. The research in this paper provides insights beyond statistical trends, contributing to a nuanced understanding of the pivotal role played by cross-border e-commerce in shaping China’s economic future.

Details

Journal of Internet and Digital Economics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2752-6356

Keywords

Open Access
Article
Publication date: 9 April 2024

Krisztina Demeter, Levente Szász, Béla-Gergely Rácz and Lehel-Zoltán Györfy

The purpose of this paper is to investigate how different manufacturing technologies are bundled together and how these bundles influence operations performance and, indirectly…

Abstract

Purpose

The purpose of this paper is to investigate how different manufacturing technologies are bundled together and how these bundles influence operations performance and, indirectly, business performance. With the emergence of Industry 4.0 (I4.0) technologies, manufacturing companies can use a wide variety of advanced manufacturing technologies (AMT) to build an efficient and effective production system. Nevertheless, the literature offers little guidance on how these technologies, including novel I4.0 technologies, should be combined in practice and how these combinations might have a different impact on performance.

Design/methodology/approach

Using a survey study of 165 manufacturing plants from 11 different countries, we use factor analysis to empirically derive three distinct manufacturing technology bundles and structural equation modeling to quantify their relationship with operations and business performance.

Findings

Our findings support an evolutionary rather than a revolutionary perspective. I4.0 technologies build on traditional manufacturing technologies and do not constitute a separate direction that would point towards a fundamental digital transformation of companies within our sample. Performance effects are rather weak: out of the three technology bundles identified, only “automation and robotization” have a positive influence on cost efficiency, while “base technologies” and “data-enabled technologies” do not offer a competitive advantage, neither in terms of cost nor in terms of differentiation. Furthermore, while the business performance impact is positive, it is quite weak, suggesting that financial returns on technology investments might require longer time periods.

Originality/value

Relying on a complementarity approach, our research offers a novel perspective on technology implementation in the I4.0 era by investigating novel and traditional manufacturing technologies together.

Details

Journal of Manufacturing Technology Management, vol. 35 no. 9
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 28 March 2022

Ahmad Albqowr, Malek Alsharairi and Abdelrahim Alsoussi

The purpose of this paper is to analyse and classify the literature that contributed to three questions, namely, what are the benefits of big data analytics (BDA) in the field of…

Abstract

Purpose

The purpose of this paper is to analyse and classify the literature that contributed to three questions, namely, what are the benefits of big data analytics (BDA) in the field of supply chain management (SCM) and logistics, what are the challenges in BDA applications in the field of SCM and logistics and what are the determinants of successful applications of BDA in the field of SCM and logistics.

Design/methodology/approach

This paper conducts a systematic literature review (SLR) to analyse the findings of 44 selected papers published in the period from 2016 to 2020, in the area of BDA and its impact on SCM. The designed protocol is composed of 14 steps in total, following Tranfeld (2003). The selected research papers are categorized into four themes.

Findings

This paper identifies sets of benefits to be gained from the use of BDA in SCM, including benefits in data analytics capabilities, operational efficiency of logistical operations and supply chain/logistics sustainability and agility. It also documents challenges to be addressed in this application, and determinants of successful implementation.

Research limitations/implications

The scope of the paper is limited to the related literature published until the beginning of Corona Virus (COVID) pandemic. Therefore, it does not cover the literature published since the COVID pandemic.

Originality/value

This paper contributes to the academic research by providing a roadmap for future empirical work into this field of study by summarising the findings of the recent work conducted to investigate the uses of BDA in SCM and logistics. Specifically, this paper culminates in a summary of the most relevant benefits, challenges and determinants discussed in recent research. As the field of BDA remains a newly established field with little practical application in SCM and logistics, this paper contributes by highlighting the most important developments in contemporary literature practical applications.

Details

VINE Journal of Information and Knowledge Management Systems, vol. 54 no. 3
Type: Research Article
ISSN: 2059-5891

Keywords

Content available

Abstract

Details

International Journal of Lean Six Sigma, vol. 15 no. 3
Type: Research Article
ISSN: 2040-4166

Article
Publication date: 18 April 2024

Ramads Thekkoote

This paper uses the complex proportionality assessment (COPRAS) method to examine the driving factors of Industry 4.0 (I4) technologies for lean implementation in small and…

Abstract

Purpose

This paper uses the complex proportionality assessment (COPRAS) method to examine the driving factors of Industry 4.0 (I4) technologies for lean implementation in small and medium-sized enterprises (SMEs).

Design/methodology/approach

Adopting I4 technology is imperative for SMEs seeking to maintain competitiveness within the manufacturing sector. A thorough understanding of the driving factors involved is required to support the implementation of I4. For this objective, the multi-criteria decision-making (MCDM) tool COPRAS was used to efficiently analyze and rank these driving elements based on their importance. These factors can help small and medium-sized firms (SMEs) prioritize their efforts and investments in I4 technologies for lean implementation.

Findings

This study evaluates and prioritizes the nine I4 factors according to the perceptions of SMEs. The ranking offers significant insights into the factors SMEs consider more accessible and effective when adopting I4 technologies.

Originality/value

The author's original contribution is to examine I4 driving factors for lean implementation in SMEs using COPRAS.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Open Access
Article
Publication date: 2 January 2024

Eylem Thron, Shamal Faily, Huseyin Dogan and Martin Freer

Railways are a well-known example of complex critical infrastructure, incorporating socio-technical systems with humans such as drivers, signallers, maintainers and passengers at…

Abstract

Purpose

Railways are a well-known example of complex critical infrastructure, incorporating socio-technical systems with humans such as drivers, signallers, maintainers and passengers at the core. The technological evolution including interconnectedness and new ways of interaction lead to new security and safety risks that can be realised, both in terms of human error, and malicious and non-malicious behaviour. This study aims to identify the human factors (HF) and cyber-security risks relating to the role of signallers on the railways and explores strategies for the improvement of “Digital Resilience” – for the concept of a resilient railway.

Design/methodology/approach

Overall, 26 interviews were conducted with 21 participants from industry and academia.

Findings

The results showed that due to increased automation, both cyber-related threats and human error can impact signallers’ day-to-day operations – directly or indirectly (e.g. workload and safety-critical communications) – which could disrupt the railway services and potentially lead to safety-related catastrophic consequences. This study identifies cyber-related problems, including external threats; engineers not considering the human element in designs when specifying security controls; lack of security awareness among the rail industry; training gaps; organisational issues; and many unknown “unknowns”.

Originality/value

The authors discuss socio-technical principles through a hexagonal socio-technical framework and training needs analysis to mitigate against cyber-security issues and identify the predictive training needs of the signallers. This is supported by a systematic approach which considers both, safety and security factors, rather than waiting to learn from a cyber-attack retrospectively.

Details

Information & Computer Security, vol. 32 no. 2
Type: Research Article
ISSN: 2056-4961

Keywords

1 – 10 of 143