Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 21 November 2023

Ping Li, Rui Xue, Sai Shao, Yuhao Zhu and Yi Liu

In recent years, railway systems worldwide have faced challenges such as the modernization of engineering projects, efficient management of intelligent digital railway equipment…

1185

Abstract

Purpose

In recent years, railway systems worldwide have faced challenges such as the modernization of engineering projects, efficient management of intelligent digital railway equipment, rapid growth in passenger and freight transport demands, customized transport services and ubiquitous transport safety. The transformation toward intelligent digital transformation in railways has emerged as an effective response to the formidable challenges confronting the railway industry, thereby becoming an inevitable global trend in railway development.

Design/methodology/approach

This paper, therefore, conducts a comprehensive analysis of the current state of global railway intelligent digital transformation, focusing on the characteristics and applications of intelligent digital transformation technology. It summarizes and analyzes relevant technologies and applicable scenarios in the realm of railway intelligent digital transformation, theoretically elucidating the development process of global railway intelligent digital transformation and, in practice, providing guidance and empirical examples for railway intelligence and digital transformation.

Findings

Digital and intelligent technologies follow a wave-like pattern of continuous iterative evolution, progressing from the early stages, to a period of increasing attention and popularity, then to a phase of declining interest, followed by a resurgence and ultimately reaching a mature stage.

Originality/value

The results offer reference and guidance to fully leverage the opportunities presented by the latest wave of the digitalization revolution, accelerate the overall upgrade of the railway industry and promote global collaborative development in railway intelligent digital transformation.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 25 November 2022

Zhijia You

The existing literature has been mainly focused on local problems but without an overall framework for studying the top-level planning of intelligent construction from a…

Abstract

Purpose

The existing literature has been mainly focused on local problems but without an overall framework for studying the top-level planning of intelligent construction from a systematic perspective. The purpose of this paper is to fill this gap.

Design/methodology/approach

This research adopts a deductive research approach.

Findings

This research proposes a reference architecture and related business scenario framework for intelligent construction based on the existing theory and industrial practice.

Originality/value

The main contribution of this research is to provide a useful reference to the Chinese government and industry for formulating digital transformation strategies, as well as suggests meaningful future research directions in the construction industry.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 14 November 2023

Hajar Pouran Manjily, Mahmood Alborzi, Turaj Behrouz and Seyed Mohammad Seyed- Hosseini

This study aims to focused on conducting a comprehensive assessment of the technology readiness level (TRL) of Iran’s oil field intelligence compared to other countries with…

Abstract

Purpose

This study aims to focused on conducting a comprehensive assessment of the technology readiness level (TRL) of Iran’s oil field intelligence compared to other countries with similar oil reservoirs. The ultimate objective is to optimize oil extraction from this field by leveraging intelligent technology. Incorporating intelligent technology in oil fields can significantly simplify operations, especially in challenging-to-access areas and increase oil production, thereby generating higher income and profits for the field owner.

Design/methodology/approach

This study evaluates the level of maturity of present oil field technologies from the perspective of an intelligent oil field by using criteria for measuring the readiness of technologies. A questionnaire was designed and distributed to 18 competent oil industry professionals. Using weighted criteria, a mean estimate of oil field technical maturity was derived from the responses of respondents. Researchers evaluated the level of technological readiness for Brunei, Kuwait and Saudi Arabia’s oil fields using scientific studies.

Findings

None of the respondents believe that the intelligent oil field in Iran is highly developed and has a TRL 9 readiness level. The bulk of experts believed that intelligent technologies in the Iran oil industry have only reached TRL 2 and 1, or are merely in the transfer phase of fundamental and applied research. Clearly, Brunei, Kuwait and Saudi Arabia have the most developed oil fields in the world. In Iran, academics and executive and contracting firms in the field of intelligent oil fields are working to intelligently develop young oil fields.

Originality/value

This study explores the level of maturity of intelligent technology in one of Iran’s oil fields. It compares it to the level of maturity of intelligent technology in several other intelligent oil fields throughout the globe. Increasing intelligent oil fields TRL enables better reservoir management and causes more profit and oil recovery.

Details

Journal of Science and Technology Policy Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2053-4620

Keywords

Article
Publication date: 29 November 2023

Kuang-Yu Chang, Chun-Der Chen and Edward C.S. Ku

This study aims to investigate tourists’ impressions of the smart destinations model from the socio-technical systems and the technology–organization–environment (TOE…

Abstract

Purpose

This study aims to investigate tourists’ impressions of the smart destinations model from the socio-technical systems and the technology–organization–environment (TOE) perspectives. Specifically, it aims to explore how information source credibility and cloud infrastructure influence tourists’ use of intelligent technology.

Design/methodology/approach

This measurement development is based on prior literature; after being evaluated for face and content validity, the authors used random sampling to collect data and conducted a field survey of tourists through Taoyuan Airport and using the airport MRT between December 2022 and March 2023. After confirming that tourists knew the destination information and had experience using travel-related mobile applications to plan their itinerary, the authors further invited tourists to participate in the survey, and 512 valid questionnaires were analyzed by the structural equation modeling approach.

Findings

The finding pointed out that source credibility and intelligent technology were innovative technologies that benefitted tourists, as were mobile travel planning apps, which created a relational context based on interests and activities from the socio-technical and TOE perspectives.

Originality/value

Technological innovation is closely related to the development of smart cities; tourists who used travel itineraries successfully understood travel-related actions and significantly had more positive affective images of the city.

Details

International Journal of Tourism Cities, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2056-5607

Keywords

Article
Publication date: 17 April 2024

Zul-Atfi Ismail

This paper aims to identify the different system approach using Building Information Modelling (BIM) technology that is equipped with decision making processes. Maintenance…

Abstract

Purpose

This paper aims to identify the different system approach using Building Information Modelling (BIM) technology that is equipped with decision making processes. Maintenance planning and management are integral components of the construction sector, serving the broader purpose of post-construction activities and processes. However, as Precast Concrete (PC) construction projects increase in scale and complexity, the interconnections among these activities and processes become apparent, leading to planning and performance management challenges. These challenges specifically affect the monitoring of façade components for corrective and preventive maintenance actions.

Design/methodology/approach

The concept of maintenance planning for façades, along with the main features of information and communication technology tools and techniques using building information modeling technology, is grounded in the analysis of numerous literature reviews in PC building scenarios.

Findings

This research focuses on an integrated system designed to analyze information and support decision-making in maintenance planning for PC buildings. It is based on robust data collection regarding concrete façades' failures and causes. The system aims to provide appropriate planning decisions and minimize the risk of façade failures throughout the building's lifetime.

Originality/value

The study concludes that implementing a research framework to develop such a system can significantly enhance the effectiveness of maintenance planning for façade design, construction and maintenance operations.

Details

Facilities , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 2 January 2024

Wenlong Cheng and Wenjun Meng

This study aims to solve the problem of job scheduling and multi automated guided vehicle (AGV) cooperation in intelligent manufacturing workshops.

Abstract

Purpose

This study aims to solve the problem of job scheduling and multi automated guided vehicle (AGV) cooperation in intelligent manufacturing workshops.

Design/methodology/approach

In this study, an algorithm for job scheduling and cooperative work of multiple AGVs is designed. In the first part, with the goal of minimizing the total processing time and the total power consumption, the niche multi-objective evolutionary algorithm is used to determine the processing task arrangement on different machines. In the second part, AGV is called to transport workpieces, and an improved ant colony algorithm is used to generate the initial path of AGV. In the third part, to avoid path conflicts between running AGVs, the authors propose a simple priority-based waiting strategy to avoid collisions.

Findings

The experiment shows that the solution can effectively deal with job scheduling and multiple AGV operation problems in the workshop.

Originality/value

In this paper, a collaborative work algorithm is proposed, which combines the job scheduling and AGV running problem to make the research results adapt to the real job environment in the workshop.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 13 November 2023

Meifang Li and Yujing Liu

With the deep development of the new technological revolution and industrial transformation, the development, application, expansion and integration of digital technology provide…

Abstract

Purpose

With the deep development of the new technological revolution and industrial transformation, the development, application, expansion and integration of digital technology provide opportunities for transforming the manufacturing industry from traditional manufacturing to intelligent manufacturing. However, little research currently focuses on analyzing the influencing factors of intelligent development in this field. There is a lack of research from the perspective of the digital innovation ecosystem to explore the intrinsic mechanism that drives intelligent development. Therefore, this article starts with high-end equipment manufacturing enterprises as the research subject to explore how their digital innovation ecosystem promotes the effectiveness of enterprise intelligent development, providing theoretical support and policy guidance for enterprises to achieve intelligent development at the current stage.

Design/methodology/approach

This article constructs a logical framework for the digital innovation ecosystem using a “three-layer core-periphery” structure, collects data using crawling for subsequent indicator measurement and assessment and uses the fuzzy set Qualitative Comparative Analysis method (fsQCA) to explore how the various components of the digital innovation ecosystem in high-end equipment manufacturing enterprises work together to promote the development of enterprise intelligently.

Findings

This article finds that the various components of the digital innovation ecosystem of high-end equipment manufacturing enterprises, through mutual coordination, can help improve the level of enterprise intelligence. Empirical analysis shows four specific configuration implementation paths for the digital innovation ecosystem of high-end equipment manufacturing enterprises to promote intelligent development. The core conditions and their combinations that affect the intelligent development of enterprises differ in each configuration path.

Originality/value

Firstly, this article discusses the practical problems of intelligent transformation and development in the manufacturing industry and focuses on the intelligent development effectiveness of various components of the digital innovation ecosystem of high-end equipment manufacturing enterprises in the context of digitalization. Secondly, this article uses crawling, text sentiment analysis and other methods to creatively collect relevant data to overcome the research dilemma of being limited to theoretical analysis due to the difficulty in obtaining data in this field. At the same time, based on the characteristics of high-end equipment manufacturing enterprises, the “three-layer core-periphery” digital innovation ecosystem framework constructed in this article helps to gain a deep understanding of the development characteristics of the industry's enterprises, provides specific indicator analysis for their intelligent development, opening the “black box” of intelligent development in the industry's enterprises and bridging the gap between theory and practice. Finally, this study uses the fsQCA research method of configuration analysis to explore the complexity of the antecedents and investigate the combined effects of multiple factors on intelligent development, providing new perspectives and rich research results for relevant literature on the intelligent development of high-end equipment manufacturing enterprises.

Details

Business Process Management Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1463-7154

Keywords

Article
Publication date: 26 February 2024

Xiaohui Jia, Chunrui Tang, Xiangbo Zhang and Jinyue Liu

This study aims to propose an efficient dual-robot task collaboration strategy to address the issue of low work efficiency and inability to meet the production needs of a single…

Abstract

Purpose

This study aims to propose an efficient dual-robot task collaboration strategy to address the issue of low work efficiency and inability to meet the production needs of a single robot during construction operations.

Design/methodology/approach

A hybrid task allocation method based on integer programming and auction algorithms, with the aim of achieving a balanced workload between two robots has been proposed. In addition, while ensuring reasonable workload allocation between the two robots, an improved dual ant colony algorithm was used to solve the dual traveling salesman problem, and the global path planning of the two robots was determined, resulting in an efficient and collision-free path for the dual robots to operate. Meanwhile, an improved fast Random tree rapidly-exploring random tree algorithm is introduced as a local obstacle avoidance strategy.

Findings

The proposed method combines randomization and iteration techniques to achieve an efficient task allocation strategy for two robots, ensuring the relative optimal global path of the two robots in cooperation and solving complex local obstacle avoidance problems.

Originality/value

This method is applied to the scene of steel bar tying in construction work, with the workload allocation and collaborative work between two robots as evaluation indicators. The experimental results show that this method can efficiently complete the steel bar banding operation, effectively reduce the interference between the two robots and minimize the interference of obstacles in the environment.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 October 2023

Zijing Ye, Huan Li and Wenhong Wei

Path planning is an important part of UAV mission planning. The main purpose of this paper is to overcome the shortcomings of the standard particle swarm optimization (PSO) such…

Abstract

Purpose

Path planning is an important part of UAV mission planning. The main purpose of this paper is to overcome the shortcomings of the standard particle swarm optimization (PSO) such as easy to fall into the local optimum, so that the improved PSO applied to the UAV path planning can enable the UAV to plan a better quality path.

Design/methodology/approach

Firstly, the adaptation function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself. Secondly, the standard PSO is improved, and the improved particle swarm optimization with multi-strategy fusion (MFIPSO) is proposed. The method introduces class sigmoid inertia weight, adaptively adjusts the learning factors and at the same time incorporates K-means clustering ideas and introduces the Cauchy perturbation factor. Finally, MFIPSO is applied to UAV path planning.

Findings

Simulation experiments are conducted in simple and complex scenarios, respectively, and the quality of the path is measured by the fitness value and straight line rate, and the experimental results show that MFIPSO enables the UAV to plan a path with better quality.

Originality/value

Aiming at the standard PSO is prone to problems such as premature convergence, MFIPSO is proposed, which introduces class sigmoid inertia weight and adaptively adjusts the learning factor, balancing the global search ability and local convergence ability of the algorithm. The idea of K-means clustering algorithm is also incorporated to reduce the complexity of the algorithm while maintaining the diversity of particle swarm. In addition, the Cauchy perturbation is used to avoid the algorithm from falling into local optimum. Finally, the adaptability function is formulated by comprehensively considering the performance constraints of the flight target as well as the UAV itself, which improves the accuracy of the evaluation model.

Details

International Journal of Intelligent Computing and Cybernetics, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 13 February 2024

Yanghong Li, Yahao Wang, Yutao Chen, X.W. Rong, Yuliang Zhao, Shaolei Wu and Erbao Dong

The current difficulties of distribution network working robots are mainly in the performance and operation mode. On the one hand, high-altitude power operation tasks require high…

Abstract

Purpose

The current difficulties of distribution network working robots are mainly in the performance and operation mode. On the one hand, high-altitude power operation tasks require high load-carrying capacity and dexterity of the robot; on the other hand, the fully autonomous mode is uncontrollable and the teleoperation mode has a high failure rate. Therefore, this study aims to design a distribution network operation robot named Sky-Worker to solve the above two problems.

Design/methodology/approach

The heterogeneous arms of Sky-Worker are driven by hydraulics and electric motors to solve the contradiction between high load-carrying capacity and high flexibility. A human–robot collaborative shared control architecture is built to realize real-time human intervention during autonomous operation, and control weights are dynamically assigned based on energy optimization.

Findings

Simulations and tests show that Sky-Worker has good dexterity while having a high load capacity. Based on Sky-Worker, multiuser tests and practical application experiments show that the designed shared-control mode effectively improves the success rate and efficiency of operations compared with other current operation modes.

Practical implications

The designed heterogeneous dual-arm distribution robot aims to better serve distribution line operation tasks.

Originality/value

For the first time, the integration of hydraulic and motor drives into a distribution network operation robot has achieved better overall performance. A human–robot cooperative shared control framework is proposed for remote live-line working robots, which provides better operation results than other current operation modes.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 1000