Search results

1 – 10 of over 16000
To view the access options for this content please click here
Article
Publication date: 19 July 2019

Tim Chen, Safiullahand Khurram and CYJ Cheng

This paper aims to deal with the problem of the global stabilization for a class of tension leg platform (TLP) nonlinear control systems.

Abstract

Purpose

This paper aims to deal with the problem of the global stabilization for a class of tension leg platform (TLP) nonlinear control systems.

Design/methodology/approach

It is well-known that, in general, the global asymptotic stability of the TLP subsystems does not imply the global asymptotic stability of the composite closed-loop system.

Findings

An effective approach is proposed to control chaos via the combination of fuzzy controllers, fuzzy observers and dithers.

Research limitations/implications

If a fuzzy controller and a fuzzy observer cannot stabilize the chaotic system, a dither, as an auxiliary of the controller and the observer, is simultaneously introduced to asymptotically stabilize the chaotic system.

Originality/value

Thus, the behavior of the closed-loop dithered chaotic system can be rigorously predicted by establishing that of the closed-loop fuzzy relaxed system.

Details

Engineering Computations, vol. 36 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Content available
Article
Publication date: 1 September 1998

Abstract

Details

Assembly Automation, vol. 18 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

To view the access options for this content please click here
Article
Publication date: 10 April 2017

Oleg V. Ena and Gulnara I. Abdrakhmanova

Developing methodically sound approaches for defining and analysing measurements of sectoral science and technology (S&T) priorities is a key pre-requisite of a successful…

Abstract

Purpose

Developing methodically sound approaches for defining and analysing measurements of sectoral science and technology (S&T) priorities is a key pre-requisite of a successful and effective state science, technology and innovation management system. This paper aims to present the results of research into the evolution of Russia’s S&T priorities in information and communication technologies (ICTs) based on a system founded on detailed profiles for sectoral critical technologies (CTs) supplemented by quantitative statistics on the development of the information society in Russia.

Design/methodology/approach

This analysis of Russia’s ICT S&T priorities was broken down into three periods which tie in with milestones when large-scale changes in ICT were observed: 2002-2006; 2007-2010; 2011-2015.

Findings

This paper presents the results of research into the evolution of Russia’s S&T priorities in ICTs based on a system founded on detailed and carefully studied profiles for sectoral CTs supplemented by quantitative statistics on the development of the information society in Russia. An important aspect in support of this approach is regular large-scale processes to update the profiles of sectoral CTs (on average once every five years) and to conduct statistical observations in ICT (once every year). The involvement in this process of updating CTs of large (500 or more) numbers of sectoral experts representing industry leaders, research and educational institutions, core ministries and regulatory bodies guarantees a comprehensive cross-section in researching and profiling CTs in different important areas: science, production and government administration.

Originality/value

For more than 15 years, the Higher School of Economics has been conducting a range of statistical studies on ICT: the amount of goods and services output in the ICT sector and the level of diffusion and use of ICT in the economy, social sphere and public and private life. The results of these studies are used as an evidence base when defining and updating STI priorities to develop Russia’s ICT industry. This paper presents a retrospective view of the evolution of Russia’s S&T priorities from 2002 to the present and discusses the effects of ICT’s transformation in specific changing markets and identifies priority areas for the future.

To view the access options for this content please click here
Article
Publication date: 1 December 1999

X.G. Ming, K.L. Mak and J.Q. Yan

Computer aided process planning (CAPP) is generally acknowledged as a significant activity to achieve computer‐integrated manufacturing (CIM). In coping with the dynamic…

Abstract

Computer aided process planning (CAPP) is generally acknowledged as a significant activity to achieve computer‐integrated manufacturing (CIM). In coping with the dynamic changes in the modern manufacturing environment, the awareness of developing intelligent CAPP systems has to be raised, in an attempt to generate more successful implementations of intelligent manufacturing systems. In this paper, the architecture of a hybrid intelligent inference model for implementing the intelligent CAPP system is developed. The detailed structure for such a model is also constructed. The establishment of the hybrid intelligent inference model will enable the CAPP system to adapt automatically to the dynamic manufacturing environment, with a view to the ultimate realization of full implementation of intelligent manufacturing systems in enterprises.

Details

Integrated Manufacturing Systems, vol. 10 no. 6
Type: Research Article
ISSN: 0957-6061

Keywords

To view the access options for this content please click here
Article
Publication date: 1 February 1993

K.C. Chan

The ideas expressed in this work are based on those put intopractice at the Okuma Corporation of Japan, one of the world′s leadingmachine tool manufacturers. In common…

Abstract

The ideas expressed in this work are based on those put into practice at the Okuma Corporation of Japan, one of the world′s leading machine tool manufacturers. In common with many other large organizations, Okuma Corporation has to meet the new challenges posed by globalization, keener domestic and international competition, shorter business cycles and an increasingly volatile environment. Intelligent corporate strategy (ICS), as practised at Okuma, is a unified theory of strategic corporate management based on five levels of win‐win relationships for profit/market share, namely: ,1. Loyalty from customers (value for money) – right focus., 2. Commitment from workers (meeting hierarchy of needs) – right attitude., 3. Co‐operation from suppliers (expanding and reliable business) – right connections., 4. Co‐operation from distributors (expanding and reliable business) – right channels., 5. Respect from competitors (setting standards for business excellence) – right strategies. The aim is to create values for all stakeholders. This holistic people‐oriented approach recognizes that, although the world is increasingly driven by high technology, it continues to be influenced and managed by people (customers, workers, suppliers, distributors, competitors). The philosophical core of ICS is action learning and teamwork based on principle‐centred relationships of sincerity, trust and integrity. In the real world, these are the roots of success in relationships and in the bottom‐line results of business. ICS is, in essence, relationship management for synergy. It is based on the premiss that domestic and international commerce is a positive sum game: in the long run everyone wins. Finally, ICS is a paradigm for manufacturing companies coping with change and uncertainty in their search for profit/market share. Time‐honoured values give definition to corporate character; circumstances change, values remain. Poor business operations generally result from human frailty. ICS is predicated on the belief that the quality of human relationships determines the bottom‐line results. ICS attempts to make manifest and explicit the intangible psychological factors for value‐added partnerships. ICS is a dynamic, living, and heuristic‐learning model. There is intelligence in the corporate strategy because it applies commonsense, wisdom, creative systems thinking and synergy to ensure longevity in its corporate life for sustainable competitive advantage.

Details

Industrial Management & Data Systems, vol. 93 no. 2
Type: Research Article
ISSN: 0263-5577

Keywords

To view the access options for this content please click here
Article
Publication date: 28 February 2020

Lianyu Wang

Intelligent lighting control system can control lights to go off when people leave, which has been widely concerned by researchers.

Abstract

Purpose

Intelligent lighting control system can control lights to go off when people leave, which has been widely concerned by researchers.

Design/methodology/approach

In this study, an intelligent lighting control system based on wireless sensor network was designed. First, the hardware and software designs of the system were described briefly. Then, the lighting control algorithm was analyzed emphatically. Considering the illumination and uniformity of light, an intelligent lighting control algorithm based on gradient descent was designed.

Findings

In the system test, it was found that the system had a good through-wall communication function, and the communication distance could fully meet the system requirements and run normally. In the test of the lighting control algorithm, it was found that the user’s satisfaction on uniformity in different scenarios was close to 1, and the satisfaction on illumination could also meet the user’s needs, which verified the reliability of the lighting control algorithm.

Originality/value

This study provides some theoretical supports for the better application of wireless sensor network in intelligent light control system, which is conducive to the further development of light control system.

Details

Journal of Engineering, Design and Technology , vol. 18 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

To view the access options for this content please click here
Article
Publication date: 27 April 2020

Qun Shi, Wangda Ying, Lei Lv and Jiajun Xie

This paper aims to present an intelligent motion attitude control algorithm, which is used to solve the poor precision problems of motion-manipulation control and the…

Abstract

Purpose

This paper aims to present an intelligent motion attitude control algorithm, which is used to solve the poor precision problems of motion-manipulation control and the problems of motion balance of humanoid robots. Aiming at the problems of a few physical training samples and low efficiency, this paper proposes an offline pre-training of the attitude controller using the identification model as a priori knowledge of online training in the real physical environment.

Design/methodology/approach

The deep reinforcement learning (DRL) of continuous motion and continuous state space is applied to motion attitude control of humanoid robots and the robot motion intelligent attitude controller is constructed. Combined with the stability analysis of the training process and control process, the stability constraints of the training process and control process are established and the correctness of the constraints is demonstrated in the experiment.

Findings

Comparing with the proportion integration differentiation (PID) controller, PID + MPC controller and MPC + DOB controller in the humanoid robots environment transition walking experiment, the standard deviation of the tracking error of robots’ upper body pitch attitude trajectory under the control of the intelligent attitude controller is reduced by 60.37 per cent, 44.17 per cent and 26.58 per cent.

Originality/value

Using an intelligent motion attitude control algorithm to deal with the strong coupling nonlinear problem in biped robots walking can simplify the control process. The offline pre-training of the attitude controller using the identification model as a priori knowledge of online training in the real physical environment makes up the problems of a few physical training samples and low efficiency. The result of using the theory described in this paper shows the performance of the motion-manipulation control precision and motion balance of humanoid robots and provides some inspiration for the application of using DRL in biped robots walking attitude control.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

To view the access options for this content please click here
Article
Publication date: 29 March 2011

Huangzhong Pu, Ziyang Zhen and Daobo Wang

Attitude control of unmanned aerial vehicle (UAV) is the purposeful manipulation of controllable external forces to establish a desired attitude, which is inner‐loop of…

Abstract

Purpose

Attitude control of unmanned aerial vehicle (UAV) is the purposeful manipulation of controllable external forces to establish a desired attitude, which is inner‐loop of the autonomous flight control system. In the practical applications, classical control methods such as proportional‐integral‐derivative control are usually selected because of simple and high reliability. However, it is usually difficult to select or optimize the control parameters. The purpose of this paper is to investigate an intelligent algorithm based classical controller of UAV.

Design/methodology/approach

Among the many intelligent algorithms, shuffled frog leaping algorithm (SFLA) combines the benefits of the genetic‐based memetic algorithm as well as social behavior based particle swarm optimization. SFLA is a population based meta‐heuristic intelligent optimization method inspired by natural memetics. In order to improve the performance of SFLA, a different dividing method of the memeplexes is presented to make their performance balance; moreover, an evolution mechanism of the best frog is introduced to make the algorithm jump out the local optimum. The modified SFLA is applied to the tuning of the proportional coefficients of pitching and rolling channels of UAV flight control system.

Findings

Simulation of a UAV control system in which the nonlinear model is obtained by the wind tunnel experiment show the rapid dynamic response and high control precision by using the modified SFLA optimized attitude controller, which is better than that of the original SFLA and particle swarm optimization method.

Originality/value

A modification scheme is presented to improve the global searching capability of SFLA. The modified SFLA based intelligent determination method of the UAV flight controller parameters is proposed, in order to improve the attitude control performance of UAV.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 4 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

To view the access options for this content please click here
Article
Publication date: 1 October 2000

M.F. Abbod, D.A. Linkens, A. Browne and N. Cade

This paper describes a software architecture which supports the design of hierarchical controllers that provide facilities for adaptation, supervision and task planning…

Abstract

This paper describes a software architecture which supports the design of hierarchical controllers that provide facilities for adaptation, supervision and task planning. It details how this form of functional hierarchy differs from the structural hierarchy also inherent within a complex control system. Then, both forms of hierarchy are combined in a single design notation and development methodology. The system utilises intelligent control techniques (neuro‐fuzzy and genetic optimisation) for controlling a cryogenic plant used for superconductor testing by cooling the test samples to temperatures below 1008K. The system supports the design of a hierarchical controller that provides facilities for adaptation, supervision and task planning. Simulation results are presented.

Details

Kybernetes, vol. 29 no. 7/8
Type: Research Article
ISSN: 0368-492X

Keywords

To view the access options for this content please click here
Article
Publication date: 20 November 2007

George K. Stylios

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched…

Abstract

Examines the thirteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 19 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of over 16000