Search results

1 – 10 of 393
Open Access
Article
Publication date: 7 June 2023

Ping Li, Yi Liu and Sai Shao

This paper aims to provide top-level design and basic platform for intelligent application in China high-speed railway.

Abstract

Purpose

This paper aims to provide top-level design and basic platform for intelligent application in China high-speed railway.

Design/methodology/approach

Based on the analysis for the future development trends of world railway, combined with the actual development needs in China high-speed railway, The definition and scientific connotation of intelligent high-speed railway (IHSR) are given at first, and then the system architecture of IHSR are outlined, including 1 basic platform, 3 business sectors, 10 business fields, and 18 innovative applications. At last, a basic platform with cloud edge integration for IHSR is designed.

Findings

The rationality, feasibility and implementability of the system architecture of IHSR have been verified on and applied to the Beijing–Zhangjiakou high-speed railway, providing important support for the construction and operation of the world’s first IHSR.

Originality/value

This paper systematically gives the definition and connotation of the IHSR and put forward the system architecture of IHSR for first time. It will play the most important role in the design, construction and operation of IHSR.

Details

Railway Sciences, vol. 2 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 21 November 2023

Ping Li, Rui Xue, Sai Shao, Yuhao Zhu and Yi Liu

In recent years, railway systems worldwide have faced challenges such as the modernization of engineering projects, efficient management of intelligent digital railway equipment…

Abstract

Purpose

In recent years, railway systems worldwide have faced challenges such as the modernization of engineering projects, efficient management of intelligent digital railway equipment, rapid growth in passenger and freight transport demands, customized transport services and ubiquitous transport safety. The transformation toward intelligent digital transformation in railways has emerged as an effective response to the formidable challenges confronting the railway industry, thereby becoming an inevitable global trend in railway development.

Design/methodology/approach

This paper, therefore, conducts a comprehensive analysis of the current state of global railway intelligent digital transformation, focusing on the characteristics and applications of intelligent digital transformation technology. It summarizes and analyzes relevant technologies and applicable scenarios in the realm of railway intelligent digital transformation, theoretically elucidating the development process of global railway intelligent digital transformation and, in practice, providing guidance and empirical examples for railway intelligence and digital transformation.

Findings

Digital and intelligent technologies follow a wave-like pattern of continuous iterative evolution, progressing from the early stages, to a period of increasing attention and popularity, then to a phase of declining interest, followed by a resurgence and ultimately reaching a mature stage.

Originality/value

The results offer reference and guidance to fully leverage the opportunities presented by the latest wave of the digitalization revolution, accelerate the overall upgrade of the railway industry and promote global collaborative development in railway intelligent digital transformation.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 27 July 2022

Yuchuan Du, Han Wang, Qian Gao, Ning Pan, Cong Zhao and Chenglong Liu

Resilience concepts in integrated urban transport refer to the performance of dealing with external shock and the ability to continue to provide transportation services of all…

1562

Abstract

Purpose

Resilience concepts in integrated urban transport refer to the performance of dealing with external shock and the ability to continue to provide transportation services of all modes. A robust transportation resilience is a goal in pursuing transportation sustainability. Under this specified context, while before the perturbations, robustness refers to the degree of the system’s capability of functioning according to its design specifications on integrated modes and routes, redundancy is the degree of duplication of traffic routes and alternative modes to maintain persistency of service in case of perturbations. While after the perturbations, resourcefulness refers to the capacity to identify operational problems in the system, prioritize interventions and mobilize necessary material/ human resources to recover all the routes and modes, rapidity is the speed of complete recovery of all modes and traffic routes in the urban area. These “4R” are the most critical components of urban integrated resilience.

Design/methodology/approach

The trends of transportation resilience's connotation, metrics and strategies are summarized from the literature. A framework is introduced on both qualitative characteristics and quantitative metrics of transportation resilience. Using both model-based and mode-free methodologies that measure resilience in attributes, topology and system performance provides a benchmark for evaluating the mechanism of resilience changes during the perturbation. Correspondingly, different pre-perturbation and post-perturbation strategies for enhancing resilience under multi-mode scenarios are reviewed and summarized.

Findings

Cyber-physic transportation system (CPS) is a more targeted solution to resilience issues in transportation. A well-designed CPS can be applied to improve transport resilience facing different perturbations. The CPS ensures the independence and integrity of every child element within each functional zone while reacting rapidly.

Originality/value

This paper provides a more comprehensive understanding of transportation resilience in terms of integrated urban transport. The fundamental characteristics and strategies for resilience are summarized and elaborated. As little research has shed light on the resilience concepts in integrated urban transport, the findings from this paper point out the development trend of a resilient transportation system for digital and data-driven management.

Details

Smart and Resilient Transportation, vol. 4 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 31 March 2021

Mei Sha, Theo Notteboom, Tao Zhang, Xin Zhou and Tianbao Qin

This paper presents a generic simulation model to determine the equipment mix (quay, yard and intra-terminal transfer) for a Container Terminal Logistics Operations System…

Abstract

This paper presents a generic simulation model to determine the equipment mix (quay, yard and intra-terminal transfer) for a Container Terminal Logistics Operations System (CTLOS). The simulation model for the CTLOS, a typical type of discrete event dynamic system (DEDS), consists of three sub-models: ship queue, loading-unloading operations and yard-gate operations. The simulation model is empirically applied to phase 1 of the Yangshan Deep Water Port in Shanghai. This study considers different scenarios in terms of container throughput levels, equipment utilization rates, and operational bottlenecks, and presents a sensitivity analysis to evaluate and choose reasonable equipment ratio ranges under different operational conditions.

Details

Journal of International Logistics and Trade, vol. 19 no. 1
Type: Research Article
ISSN: 1738-2122

Keywords

Open Access
Article
Publication date: 13 September 2023

Shuxin Ding, Tao Zhang, Kai Sheng, Yuanyuan Chen and Zhiming Yuan

The intelligent Central Traffic Control (CTC) system plays a vital role in establishing an intelligent high-speed railway (HSR) system. As the core of HSR transportation command…

Abstract

Purpose

The intelligent Central Traffic Control (CTC) system plays a vital role in establishing an intelligent high-speed railway (HSR) system. As the core of HSR transportation command, the intelligent CTC system is a new HSR dispatching command system that integrates the widely used CTC in China with the practical service requirements of intelligent dispatching. This paper aims to propose key technologies and applications for intelligent dispatching command in HSR in China.

Design/methodology/approach

This paper first briefly introduces the functions and configuration of the intelligent CTC system. Some new servers, terminals and interfaces are introduced, which are plan adjustment server/terminal, interface for automatic train operation (ATO), interface for Dynamic Monitoring System of Train Control Equipment (DMS), interface for Power Supervisory Control and Data Acquisition (PSCADA), interface for Disaster Monitoring, etc.

Findings

The key technologies applied in the intelligent CTC system include automatic adjustment of train operation plans, safety control of train routes and commands, traffic information data platform, integrated simulation of traffic dispatching and ATO function. These technologies have been applied in the Beijing-Zhangjiakou HSR, which commenced operations at the end of 2019. Implementing these key intelligent functions has improved the train dispatching command capacity, ensured the safe operation of intelligent HSR, reduced the labor intensity of dispatching operators and enhanced the intelligence level of China's dispatching system.

Originality/value

This paper provides further challenges and research directions for the intelligent dispatching command of HSR. To achieve the objectives, new measures need to be conducted, including the development of advanced technologies for intelligent dispatching command, coping with new requirements with the development of China's railway signaling system, the integration of traffic dispatching and train control and the application of AI and data-driven modeling and methods.

Open Access
Article
Publication date: 10 February 2023

Junting Lin, Mingjun Ni and Huadian Liang

This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under…

Abstract

Purpose

This study aims to propose an adaptive fractional-order sliding mode controller to solve the problem of train speed tracking control and position interval control under disturbance environment in moving block system, so as to improve the tracking efficiency and collision avoidance performance.

Design/methodology/approach

The mathematical model of information interaction between trains is established based on algebraic graph theory, so that the train can obtain the state information of adjacent trains, and then realize the distributed cooperative control of each train. In the controller design, the sliding mode control and fractional calculus are combined to avoid the discontinuous switching phenomenon, so as to suppress the chattering of sliding mode control, and a parameter adaptive law is constructed to approximate the time-varying operating resistance coefficient.

Findings

The simulation results show that compared with proportional integral derivative (PID) control and ordinary sliding mode control, the control accuracy of the proposed algorithm in terms of speed is, respectively, improved by 25% and 75%. The error frequency and fluctuation range of the proposed algorithm are reduced in the position error control, the error value tends to 0, and the operation trend tends to be consistent. Therefore, the control method can improve the control accuracy of the system and prove that it has strong immunity.

Originality/value

The algorithm can reduce the influence of external interference in the actual operating environment, realize efficient and stable tracking of trains, and ensure the safety of train control.

Details

Railway Sciences, vol. 2 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Book part
Publication date: 18 July 2022

Fabian Akkerman, Eduardo Lalla-Ruiz, Martijn Mes and Taco Spitters

Cross-docking is a supply chain distribution and logistics strategy for which less-than-truckload shipments are consolidated into full-truckload shipments. Goods are stored up to…

Abstract

Cross-docking is a supply chain distribution and logistics strategy for which less-than-truckload shipments are consolidated into full-truckload shipments. Goods are stored up to a maximum of 24 hours in a cross-docking terminal. In this chapter, we build on the literature review by Ladier and Alpan (2016), who reviewed cross-docking research and conducted interviews with cross-docking managers to find research gaps and provide recommendations for future research. We conduct a systematic literature review, following the framework by Ladier and Alpan (2016), on cross-docking literature from 2015 up to 2020. We focus on papers that consider the intersection of research and industry, e.g., case studies or studies presenting real-world data. We investigate whether the research has changed according to the recommendations of Ladier and Alpan (2016). Additionally, we examine the adoption of Industry 4.0 practices in cross-docking research, e.g., related to features of the physical internet, the Internet of Things and cyber-physical systems in cross-docking methodologies or case studies. We conclude that only small adaptations have been done based on the recommendations of Ladier and Alpan (2016), but we see growing attention for Industry 4.0 concepts in cross-docking, especially for physical internet hubs.

Open Access
Article
Publication date: 25 October 2021

Cong Li, YunFeng Xie, Gang Wang, XianFeng Zeng and Hui Jing

This paper studies the lateral stability regulation of intelligent electric vehicle (EV) based on model predictive control (MPC) algorithm.

951

Abstract

Purpose

This paper studies the lateral stability regulation of intelligent electric vehicle (EV) based on model predictive control (MPC) algorithm.

Design/methodology/approach

Firstly, the bicycle model is adopted in the system modelling process. To improve the accuracy, the lateral stiffness of front and rear tire is estimated using the real-time yaw rate acceleration and lateral acceleration of the vehicle based on the vehicle dynamics. Then the constraint of input and output in the model predictive controller is designed. Soft constraints on the lateral speed of the vehicle are designed to guarantee the solved persistent feasibility and enforce the vehicle’s sideslip angle within a safety range.

Findings

The simulation results show that the proposed lateral stability controller based on the MPC algorithm can improve the handling and stability performance of the vehicle under complex working conditions.

Originality/value

The MPC schema and the objective function are established. The integrated active front steering/direct yaw moments control strategy is simultaneously adopted in the model. The vehicle’s sideslip angle is chosen as the constraint and is controlled in stable range. The online estimation of tire stiffness is performed. The vehicle’s lateral acceleration and the yaw rate acceleration are modelled into the two-degree-of-freedom equation to solve the tire cornering stiffness in real time. This can ensure the accuracy of model.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 3
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 1 July 2021

Xiaochun Guan, Sheng Lou, Han Li and Tinglong Tang

Deployment of deep neural networks on embedded devices is becoming increasingly popular because it can reduce latency and energy consumption for data communication. This paper…

2539

Abstract

Purpose

Deployment of deep neural networks on embedded devices is becoming increasingly popular because it can reduce latency and energy consumption for data communication. This paper aims to give out a method for deployment the deep neural networks on a quad-rotor aircraft for further expanding its application scope.

Design/methodology/approach

In this paper, a design scheme is proposed to implement the flight mission of the quad-rotor aircraft based on multi-sensor fusion. It integrates attitude acquisition module, global positioning system position acquisition module, optical flow sensor, ultrasonic sensor and Bluetooth communication module, etc. A 32-bit microcontroller is adopted as the main controller for the quad-rotor aircraft. To make the quad-rotor aircraft be more intelligent, the study also proposes a method to deploy the pre-trained deep neural networks model on the microcontroller based on the software packages of the RT-Thread internet of things operating system.

Findings

This design provides a simple and efficient design scheme to further integrate artificial intelligence (AI) algorithm for the control system design of quad-rotor aircraft.

Originality/value

This method provides an application example and a design reference for the implementation of AI algorithms on unmanned aerial vehicle or terminal robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 27 December 2021

Hristo Trifonov and Donal Heffernan

The purpose of this paper is to describe how emerging open standards are replacing traditional industrial networks. Current industrial Ethernet networks are not interoperable;…

3132

Abstract

Purpose

The purpose of this paper is to describe how emerging open standards are replacing traditional industrial networks. Current industrial Ethernet networks are not interoperable; thus, limiting the potential capabilities for the Industrial Internet of Things (IIoT). There is no forthcoming new generation fieldbus standard to integrate into the IIoT and Industry 4.0 revolution. The open platform communications unified architecture (OPC UA) time-sensitive networking (TSN) is a potential vendor-independent successor technology for the factory network. The OPC UA is a data exchange standard for industrial communication, and TSN is an Institute of Electrical and Electronics Engineers standard for Ethernet that supports real-time behaviour. The merging of these open standard solutions can facilitate cross-vendor interoperability for Industry 4.0 and IIoT products.

Design/methodology/approach

A brief review of the history of the fieldbus standards is presented, which highlights the shortcomings for current industrial systems in meeting converged traffic solutions. An experimental system for the OPC UA TSN is described to demonstrate an approach to developing a three-layer factory network system with an emphasis on the field layer.

Findings

From the multitude of existing industrial network schemes, there is a convergence pathway in solutions based on TSN Ethernet and OPC UA. At the field level, basic timing measurements in this paper show that the OPC UA TSN can meet the basic critical timing requirements for a fieldbus network.

Originality/value

This paper uniquely focuses on the specific fieldbus standards elements of industrial networks evolution and traces the developments from the early history to the current developing integration in IIoT context.

Details

International Journal of Pervasive Computing and Communications, vol. 19 no. 3
Type: Research Article
ISSN: 1742-7371

Keywords

1 – 10 of 393