Search results

1 – 10 of over 6000
Article
Publication date: 16 February 2021

Himanshukumar R. Patel, Sejal K. Raval and Vipul A. Shah

The purpose of this article is about the design of controllers for conical two-tank noninteracting level (CTTNL) system in simulation. Local linearization around the equilibrium…

Abstract

Purpose

The purpose of this article is about the design of controllers for conical two-tank noninteracting level (CTTNL) system in simulation. Local linearization around the equilibrium point has been done for the nonlinear CTTNL system to obtain a linearized model transfer function.

Design/methodology/approach

This article deals with the design of novel optimal fractional-order tilt-integral-derivative (TID) controller using type-1 fuzzy set for the CTTNL prototype system. In this study, type-1 fuzzy TID controller parameters have been optimized through genetic algorithm (GA) and those set of values have been employed for the design of proportional-integral-derivative (PID) controller.

Findings

A performance comparison between FTID and PID controller is then investigated. The analysis shows the superiority of FTID controller over PID controller in terms of integral absolute error (IAE), integral square error (ISE), integral of time multiplied absolute error (ITAE) and integral of time multiplied squared error (ITSE) integral errors. The transient and steady state performance of the FTID controller are superior as compared to conventional PID controller. In future, the FTID controller fault-tolerance capability tested on CTTNL system subject to actuator and system component (leak) faults. The detailed study of robustness in presence of model uncertainties will be incorporated as a scope of further research.

Originality/value

A performance comparison between FTID and PID controller is then investigated. The analysis shows the superiority of FTID controller over PID controller in terms of IAE, ISE, ITAE and ITSE integral errors. Additionally, fault-tolerant performance of the proposed controller evaluated with fault-recovery time (Frt) parameter. The transient and steady state performance of the FTID controller are superior as compared to conventional PID controller.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 14 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 11 June 2018

Rosy Pradhan, Santosh Kumar Majhi and Bibhuti Bhusan Pati

Now days, various techniques are used for controlling the plants. New ideas are evolving day by day to get better-quality control for various industrial processes to produce…

Abstract

Purpose

Now days, various techniques are used for controlling the plants. New ideas are evolving day by day to get better-quality control for various industrial processes to produce high-quality products. Currently, the focus of this research is being emphasized on application of nature-inspired algorithms in control systems. The purpose of this paper is to apply a nature-inspired algorithm called Ant Lion Optimizer (ALO) for the design of proportional-integrator-derivative (PID) controller for an automatic voltage regulator (AVR) system.

Design/methodology/approach

For the design of the PID controller, the ALO algorithm is considered as a designing tool for obtaining the optimal values of the controller parameter. All the simulations are carried out in Simulink/MATLAB environment. A comparative study is carried out with some modern nature-inspired algorithm to describe the advantages of this tuning method.

Findings

The proposed method has superiority value in transient and frequency domain analysis than the other published heuristic optimization algorithms. The presented approach has almost no variation in transient response when varying time constants of the system parameter, such as exciter, generator, amplifier and sensor from −50 per cent to +50 per cent. In addition, the close loop system is robust against any disturbances such as input–output disturbances and parametric uncertainty, as the sensitivity values are nearly equal to one.

Originality/value

The proposed method presents the design and performance analysis of proportional integral derivate (PID) controller for an AVR system using the recently proposed ALO.

Details

World Journal of Engineering, vol. 15 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 July 2014

Carlos S. Betancor-Martín, J. Sosa, Juan A. Montiel-Nelson and Aurelio Vega-Martínez

Nowadays, in order to improve current applications, industry incorporates to their solution approaches artificial intelligence techniques and methodologies like Fuzzy Logic…

Abstract

Purpose

Nowadays, in order to improve current applications, industry incorporates to their solution approaches artificial intelligence techniques and methodologies like Fuzzy Logic, neural networks and/or genetic algorithms (GA). Artificial intelligence techniques complement classical methodologies and include concepts that simulate the way humans solve problems or how processes work in nature. In this work, the Fuzzy Logic system cancels the effects of load perturbances in an energy plant, by implementing a secondary controller which complements the main controller. The purpose of this paper is to use GA to tune this new secondary controller. The authors particularize the proposal for three specific applications: control the angular speed and position of a Direct Current (DC) motor and control the output voltage of a DC/DC buck converter.

Design/methodology/approach

The authors use GA for tuning a Proportional-Integral Fuzzy Controller (PI-Fuzzy). The proposal defines a new objective function in comparison with literature approaches. The main key in the new objective function is combining the best features of Integral Square Error (ISE) function and taking out the overshoot response.

Findings

In order to demonstrate the proposed methodology based on GA tuning a PI-Fuzzy, the authors apply the literature benchmark to the solution. The results are compared with the following techniques: Robust control, continuous PID control, discrete PID control, Optimal Control, Fuzzy Control and Artificial Neural Network based control. Comparisons are presented in terms of setting time and overshot.

Originality/value

Results demonstrate that ISE or integral of absolute value of error function do not provide the desired response. Achieved results demonstrate the usefulness of the proposal to eliminate the overshoot of the traditional behaviour without lost any of the main features of the literature methodologies.

Article
Publication date: 30 May 2019

Mohammad Tabatabaei

This paper aims to propose an analytical method for designing parametric optimization-based proportional integral (PI) controllers.

Abstract

Purpose

This paper aims to propose an analytical method for designing parametric optimization-based proportional integral (PI) controllers.

Design/methodology/approach

In this method, a performance index containing the weighted summation of the integral square of the error and its derivative is minimized. This performance index is analytically calculated in terms of the controller parameters by solving a Lyapunov equation. Then partial derivatives of the performance index with respect to controller parameters are calculated. Equating these partial derivatives to zero gives explicit relations for the PI controller parameters.

Findings

The experimental tests on a DC servomotor system are given to demonstrate the efficiency of the proposed method.

Originality/value

This paper proposes an analytical parametric optimization approach for designing PI controllers for the first time. The application of the proposed method in a laboratory experiment is examined.

Details

World Journal of Engineering, vol. 16 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 August 2010

Tushar Jain, Srinivasan Alavandar, Singh Vivekkumar Radhamohan and M.J. Nigam

The purpose of this paper is to propose a novel algorithm which hybridizes the best features of three basic algorithms, i.e. genetic algorithm, bacterial foraging, and particle…

Abstract

Purpose

The purpose of this paper is to propose a novel algorithm which hybridizes the best features of three basic algorithms, i.e. genetic algorithm, bacterial foraging, and particle swarm optimization (PSO) as genetically bacterial swarm optimization (GBSO). The implementation of GBSO is illustrated by designing the fuzzy pre‐compensated PD (FPPD) control for two‐link rigid‐flexible manipulator.

Design/methodology/approach

The hybridization is carried out in two phases; first, the diversity in searching the optimal solution is increased using selection, crossover, and mutation operators. Second, the search direction vector is optimized using PSO to enhance the convergence rate of the fitness function in achieving the optimality. The FPPD controller design objective was to tune the PD controller constants, normalization, and denormalization factors for both the joints so that integral square error, overshoots, and undershoots are minimized.

Findings

The proposed algorithm is tested on a set of mathematical functions which are then compared with the basic algorithms. The results showed that the GBSO had a convergence rate better than the other algorithms, reaching to the optimal solution. Also, an approach of using fuzzy pre‐compensator in reducing the overshoots and undershoots for loading‐unloading and circular trajectories had been successfully achieved over simple PD controller. The results presented emphasize that a satisfactory tracking precision could be achieved using hybrid FPPD controller with GBSO.

Originality/value

Simulation results were reported and the proposed algorithm indeed has established superiority over the basic algorithms with respect to set of functions considered and it can easily be extended for other global optimization problems. The proposed FPPD controller tuning approach is interesting for the design of controllers for inherently unstable high‐order systems.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 3 no. 3
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 7 April 2021

Thomas George and V. Ganesan

The purpose of this manuscript, a state feedback gain depends on the optimal design of fractional order PID controller to time-delay system is established. In established optimal…

Abstract

Purpose

The purpose of this manuscript, a state feedback gain depends on the optimal design of fractional order PID controller to time-delay system is established. In established optimal design known as advanced cuttlefish optimizer and random decision forest that is combined performance of random decision forest algorithm (RDFA) and advanced cuttlefish optimizer (ACFO).

Design/methodology/approach

The proposed ACFO uses the concept of crossover and mutation operator depend on position upgrading to enhance its search behavior, calculational speed as well as convergence profile at basic cuttlefish optimizer.

Findings

Fractional order proportional-integrator-derivative (FOPID) controller, apart from as tuning parameters (kp, ki and kd) it consists of two extra tuning parameters λ and µ. In established technology, the increase of FOPID controller is adjusted to reach needed responses that demonstrated using RDFA theory as well as RDF weight matrices is probable to the help of the ACFO method. The uniqueness of the established method is to decrease the failure of the FOPID controller at greater order time delay method with the help of controller maximize restrictions. The objective of the established method is selected to consider parameters set point as well as achieved parameters of time-delay system.

Originality/value

In the established technique used to evade large order delays as well as reliability restrictions such as small excesses, time resolution, as well as fixed condition defect. These methods is implemented at MATLAB/Simulink platform as well as outcomes compared to various existing methods such as Ziegler-Nichols fit, curve fit, Wang method, regression and invasive weed optimization and linear-quadratic regression method.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 18 August 2021

Ram Kumar and Afzal Sikander

This paper aims to suggest the parameter identification of load frequency controller in power system.

Abstract

Purpose

This paper aims to suggest the parameter identification of load frequency controller in power system.

Design/methodology/approach

The suggested control approach is established using fuzzy logic to design a fractional order load frequency controller. A new suitable control law is developed using fuzzy logic, and based on this developed control law, the unknown parameters of the fractional order proportional integral derivative (FOPID) controller are derived using an optimization technique, which is being used by minimizing the integral square error. In addition, to confirm the effectiveness of the proposed control design approach, numerous simulation tests were carried out on an actual single-area power system.

Findings

The obtained results reveal the superiority of the suggested controller as compared to the recently developed controllers with regard to time response specifications and quantifiable indicators. Additionally, the potential of the suggested controller is also observed by improving the load disturbance rejections under plant parametric uncertainty.

Originality/value

To the best of the authors’ knowledge, the work is not published anywhere else.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 40 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 July 2017

Mehran Esmaeili, Hossein Shayeghi, Hamid Mohammad Nejad and Abdollah Younesi

This paper aims to propose an improved reinforcement learning-based fuzzy-PID controller for load frequency control (LFC) of an island microgrid.

Abstract

Purpose

This paper aims to propose an improved reinforcement learning-based fuzzy-PID controller for load frequency control (LFC) of an island microgrid.

Design/methodology/approach

To evaluate the performance of the proposed controller, three different types of controllers including optimal proportional-integral-derivative (PID) controller, optimal fuzzy PID controller and the proposed reinforcement learning-based fuzzy-PID controller are compared. Optimal PID controller and classic fuzzy-PID controller parameters are tuned using Non-dominated Sorting Genetic Algorithm-II algorithm to minimize overshoot, settling time and integral square error over a wide range of load variations. The simulations are carried out using MATLAB/SIMULINK package.

Findings

Simulation results indicated the superiority of the proposed reinforcement learning-based controller over fuzzy-PID and optimal-PID controllers in the same operational conditions.

Originality/value

In this paper, an improved reinforcement learning-based fuzzy-PID controller is proposed for LFC of an island microgrid. The main advantage of the reinforcement learning-based controllers is their hardiness behavior along with uncertainties and parameters variations. Also, they do not need any knowledge about the system under control; thus, they can control any large system with high nonlinearities.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 August 2021

Aziz Kaba

The purpose of this paper is to develop, extend and propose an improved proportional integral derivative (PID) rate control of a quadrotor unmanned aerial vehicle based on a…

207

Abstract

Purpose

The purpose of this paper is to develop, extend and propose an improved proportional integral derivative (PID) rate control of a quadrotor unmanned aerial vehicle based on a convexity-based surrogated firefly algorithm.

Design/methodology/approach

An improved PID controller structure is proposed for the rate dynamics of the quadrotor. Optimality of the controller is ensured by a recent, simple yet efficient firefly optimization method. The hybrid structure is further enhanced with a convexity-based surrogated model function.

Findings

Monte Carlo, transient response, error metrics and histogram distribution analyzes are conducted to show the performance of the proposed controller. The performance of the proposed method is evaluated under various convex combination values to further investigate the effect of the proposed surrogated model. According to the results, the proposed method is capable of controlling the rate quadrotor dynamics with the steady-state error of 0.0023 (rad/s) for P, −0.0024 (rad/s) for Q and 0 (rad/s) for the R state, respectively. Also, the least mean objective value is achieved at = 0 value of convexity in Monte Carlo trials.

Originality/value

The originality of this paper is to propose an improved PID rate controller with a convexity-based surrogated firefly algorithm.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 August 2021

Vanchinathan Kumarasamy, Valluvan KarumanchettyThottam Ramasamy and Gnanavel Chinnaraj

The puspose of this paper, a novel systematic design of fractional order proportional integral derivative (FOPID) controller-based speed control of sensorless brushless DC (BLDC…

Abstract

Purpose

The puspose of this paper, a novel systematic design of fractional order proportional integral derivative (FOPID) controller-based speed control of sensorless brushless DC (BLDC) motor using multi-objective enhanced genetic algorithm (EGA). This scheme provides an excellent dynamic and static response, low computational burden, the robust speed control.

Design/methodology/approach

The EGA is a meta-heuristic-inspired algorithm for solving non-linearity problems such as sudden load disturbances, modeling errors, power fluctuations, poor stability, the maximum time of transient processes, static and dynamic errors. The conventional genetic algorithm (CGA) and modified genetic algorithm (MGA) are not very effective in solving the above-mentioned problems. Hence, a multi-objective EGA optimized FOPID (EGA-FOPID) controller is proposed for speed control of sensorless BLDC motor under various conditions such as constant load conditions, varying load conditions, varying set speed (Ns) conditions, integrated conditions and controller parameters uncertainty.

Findings

This systematic design of the multi-objective EGA-FOPID controller is implemented in MATLAB 2020a with Simulink models for optimal speed control of the BLDC motor. The overall performance of the EGA-FOPID controller is observed and evaluated for computational burden, time integral performance indexes, transient and steady-state characteristics. The hardware experiment results confirm that the proposed EGA-FOPID controller can precisely change the BLDC motor speed is desired range with minimal effort.

Research limitations/implications

The conventional real time issues such as nonlinearity characteristics, poor controllability and stability.

Practical implications

It is clearly evident that out of these three intelligent controllers, the EGA optimized FOPID controller gives enhanced performance by minimizing the time domain parameters, performance Indices error and convergence time. Also, the hardware experimental setup and the results of the proposed EGA-FOPID controller are presented.

Originality/value

It shows the effectiveness of the proposed controllers is completely verified by comparing the above three intelligent optimization algorithms. It is clearly evident that out of these three intelligent controllers, the EGA optimized FOPID controller gives enhanced performance by minimizing the time domain parameters, performance Indices error and convergence time. Also, the hardware experimental setup and the results of the proposed EGA-FOPID controller are presented.

1 – 10 of over 6000