Search results

1 – 10 of 125
Open Access
Article
Publication date: 30 November 2020

Yaqin Zhang, Mingming Wang, Ruimin Wang, Zhipeng Li and Nan Zhang

This paper aims to reschedule the freight train timetable in case of disturbance to restore the train services as soon as possible.

5044

Abstract

Purpose

This paper aims to reschedule the freight train timetable in case of disturbance to restore the train services as soon as possible.

Design/methodology/approach

Hence, an integer linear programming model for the real-time freight heavy-haul railway traffic management is developed in case of large primary delays caused by the delayed cargos loading. The proposed model based on the alternative graph at the microscopic level depicts the freight train movements in detail. Multiple dispatching measures such as re-timing and re-ordering are taken into account. Moreover, two objective functions, namely, the total final delays and the consecutive delays, are minimized in the freight trains dispatching problem.

Findings

Finally, a real-world computational experiment based on the Haolebaoji-Ji’an freight heavy-haul railway is implemented. The results of all disrupted cases are obtained within 10 s. The results give insight into that the consecutive delays are more than the total final delays when the same disrupted situation and the consecutive or total final delays increase as the primary delays increase.

Originality/value

An integer linear programming model based on the alternative graph for the real-time freight heavy-haul railway traffic management is developed in case of large primary delays caused by the delayed cargos loading. The method can be developed as the computer-aided tool for freight train dispatchers.

Details

Smart and Resilient Transportation, vol. 2 no. 2
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 16 October 2017

Ahmed Mohammed, Qian Wang and Xiaodong Li

The purpose of this paper is to investigate the economic feasibility of a three-echelon Halal Meat Supply Chain (HMSC) network that is monitored by a proposed radio frequency…

2753

Abstract

Purpose

The purpose of this paper is to investigate the economic feasibility of a three-echelon Halal Meat Supply Chain (HMSC) network that is monitored by a proposed radio frequency identification (RFID)-based management system for enhancing the integrity traceability of Halal meat products and to maximize the average integrity number of Halal meat products, maximize the return of investment (ROI), maximize the capacity utilization of facilities and minimize the total investment cost of the proposed RFID-monitoring system. The location-allocation problem of facilities needs also to be resolved in conjunction with the quantity flow of Halal meat products from farms to abattoirs and from abattoirs to retailers.

Design/methodology/approach

First, a deterministic multi-objective mixed integer linear programming model was developed and used for optimizing the proposed RFID-based HMSC network toward a comprised solution based on four conflicting objectives as described above. Second, a stochastic programming model was developed and used for examining the impact on the number of Halal meat products by altering the value of integrity percentage. The ε-constraint approach and the modified weighted sum approach were proposed for acquisition of non-inferior solutions obtained from the developed models. Furthermore, the Max-Min approach was used for selecting the best solution among them.

Findings

The research outcome shows the applicability of the developed models using a real case study. Based on the computational results, a reasonable ROI can be achievable by implementing RFID into the HMSC network.

Research limitations/implications

This work addresses interesting avenues for further research on exploring the HMSC network design under different types of uncertainties and transportation means. Also, environmentalism has been becoming increasingly a significant global problem in the present century. Thus, the presented model could be extended to include the environmental aspects as an objective function.

Practical implications

The model can be utilized for food supply chain designers. Also, it could be applied to realistic problems in the field of supply chain management.

Originality/value

Although there were a few studies focusing on the configuration of a number of HMSC networks, this area is overlooked by researchers. The study shows the developed methodology can be a useful tool for designers to determine a cost-effective design of food supply chain networks.

Details

Industrial Management & Data Systems, vol. 117 no. 9
Type: Research Article
ISSN: 0263-5577

Keywords

Open Access
Article
Publication date: 19 June 2023

Fang Wen, Yun Bai, Xin Zhang, Yao Chen and Ninghai Li

This study aims to improve the passenger accessibility of passenger demands in the end-of-operation period.

Abstract

Purpose

This study aims to improve the passenger accessibility of passenger demands in the end-of-operation period.

Design/methodology/approach

A mixed integer nonlinear programming model for last train timetable optimization of the metro was proposed considering the constraints such as the maximum headway, the minimum headway and the latest end-of-operation time. The objective of the model is to maximize the number of reachable passengers in the end-of-operation period. A solution method based on a preset train service is proposed, which significantly reduces the variables of deciding train services in the original model and reformulates it into a mixed integer linear programming model.

Findings

The results of the case study of Wuhan Metro show that the solution method can obtain high-quality solutions in a shorter time; and the shorter the time interval of passenger flow data, the more obvious the advantage of solution speed; after optimization, the number of passengers reaching the destination among the passengers who need to take the last train during the end-of-operation period can be increased by 10%.

Originality/value

Existing research results only consider the passengers who take the last train. Compared with previous research, considering the overall passenger demand during the end-of-operation period can make more passengers arrive at their destination. Appropriately delaying the end-of-operation time can increase the proportion of passengers who can reach the destination in the metro network, but due to the decrease in passenger demand, postponing the end-of-operation time has a bottleneck in increasing the proportion of passengers who can reach the destination.

Open Access
Article
Publication date: 5 May 2022

Jia He, Na Yan, Jian Zhang, Yang Yu and Tao Wang

This paper aims to optimize the charging schedule for battery electric buses (BEBs) to minimize the charging cost considering the time-of-use electricity price.

1294

Abstract

Purpose

This paper aims to optimize the charging schedule for battery electric buses (BEBs) to minimize the charging cost considering the time-of-use electricity price.

Design/methodology/approach

The BEBs charging schedule optimization problem is formulated as a mixed-integer linear programming model. The objective is to minimize the total charging cost of the BEB fleet. The charge decision of each BEB at the end of each trip is to be determined. Two types of constraints are adopted to ensure that the charging schedule meets the operational requirements of the BEB fleet and that the number of charging piles can meet the demand of the charging schedule.

Findings

This paper conducts numerical cases to validate the effect of the proposed model based on the actual timetable and charging data of a bus line. The results show that the total charge cost with the optimized charging schedule is 15.56% lower than the actual total charge cost under given conditions. The results also suggest that increasing the number of charging piles can reduce the charging cost to some extent, which can provide a reference for planning the number of charging piles.

Originality/value

Considering time-of-use electricity price in the BEBs charging schedule will not only reduce the operation cost of electric transit but also make the best use of electricity resources.

Details

Journal of Intelligent and Connected Vehicles, vol. 5 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 30 September 2021

Thakshila Samarakkody and Heshan Alagalla

This research is designed to optimize the business process of a green tea dealer, who is a key supply chain partner of the Sri Lankan tea industry. The most appropriate trips for…

1332

Abstract

Purpose

This research is designed to optimize the business process of a green tea dealer, who is a key supply chain partner of the Sri Lankan tea industry. The most appropriate trips for each vehicle in multiple trip routing systems are identified to minimize the total cost by considering the traveling distance.

Design/methodology/approach

The study has followed the concepts in vehicle routing problems and mixed-integer programming mathematical techniques. The model was coded with the Python programming language and was solved with the CPLEX Optimization solver version 12.10. In total, 20 data instances were used from the subjected green tea dealer for the validation of the model.

Findings

The result of the numerical experiment showed the ability to access supply over the full capacity of the available fleet. The model achieved optimal traveling distance for all the instances, with the capability of saving 17% of daily transpiration cost as an average.

Research limitations/implications

This study contributes to the three index mixed-integer programing model formulation through in-depth analysis and combination of several extensions of vehicle routing problem.

Practical implications

This study contributes to the three index mixed-integer programming model formulation through in-depth analysis and combination of several extensions of the vehicle routing problem.

Social implications

The proposed model provides a cost-effective optimal routing plan to the green tea dealer, which satisfies all the practical situations by following the multiple trip vehicle routing problems. Licensee green tea dealer is able to have an optimal fleet size, which is always less than the original fleet size. Elimination of a vehicle from the fleet has the capability of reducing the workforce. Hence, this provides managerial implication for the optimal fleet sizing and route designing.

Originality/value

Developing an optimization model for a tea dealer in Sri Lankan context is important, as this a complex real world case which has a significant importance in export economy of the country and which has not been analyzed or optimized through any previous research effort.

Details

Modern Supply Chain Research and Applications, vol. 3 no. 4
Type: Research Article
ISSN: 2631-3871

Keywords

Open Access
Article
Publication date: 16 October 2017

Pawel Sitek, Jaroslaw Wikarek and Peter Nielsen

The purpose of this paper is the need to build a novel approach that would allow flexible modeling and solving of food supply chain management (FSCM) problems. The models…

3944

Abstract

Purpose

The purpose of this paper is the need to build a novel approach that would allow flexible modeling and solving of food supply chain management (FSCM) problems. The models developed would use the data (data-driven modeling) as early as possible at the modeling phase, which would lead to a better and more realistic representation of the problems being modeled.

Design/methodology/approach

An essential feature of the presented approach is its declarativeness. The use of a declarative approach that additionally includes constraint satisfaction problems and provides an opportunity of fast and easy modeling of constrains different in type and character. Implementation of the proposed approach was performed with the use of an original hybrid method in which constraint logic programming (CLP) and mathematical programming (MP) are integrated and transformation of a model is used as a presolving technique.

Findings

The proposed constraint-driven approach has proved to be extremely flexible and efficient. The findings obtained during part of experiments dedicated to efficiency were very interesting. The use of the constraint-driven approach has enabled finding a solution depending on the instance data up to 1,000 times faster than using the MP.

Research limitations/implications

Due to the limited use of exact methods for NP-hard problems, the future study should be to integrate the CLP with environments other than the MP. It is also possible, e.g., with metaheuristics like genetic algorithms, ant colony optimization, etc.

Practical implications

There is a possibility of using the approach as a basis to build a decision support system for FSCM, simple integration with databases, enterprise resource planning systems, management information systems, etc.

Originality/value

The new constraint-driven approach to FSCM has been proposed. The proposed approach is an extension of the hybrid approach. Also, a new decision-making model of distribution and logistics for the food supply chain is built. A presolving technique for this model has been presented.

Open Access
Article
Publication date: 14 May 2019

Yuqiang Wang, Yuguang Wei, Hua Shi, Xinyu Liu, Liyuan Feng and Pan Shang

The purpose of this paper is to study the unit train make-up scheme for loaded direction in the heavy haul railway.

Abstract

Purpose

The purpose of this paper is to study the unit train make-up scheme for loaded direction in the heavy haul railway.

Design/methodology/approach

A 0-1 nonlinear integer programming model with the aim of minimizing the idling period between actual train arrival time and expected train arrival time for all loaded unit trains are proposed.

Findings

The proposed model is applied into a case study based on Daqin heavy haul railway. Results show that the proposed model can offer operators an optimal unit train make-up scheme for loaded direction in heavy haul railway.

Originality/value

The proposed model can offer operators an optimal unit train make-up scheme for loaded direction in heavy haul railway.

Details

Smart and Resilient Transportation, vol. 1 no. 1
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 13 February 2020

John A. Kearby, Ryan D. Winz, Thom J. Hodgson, Michael G. Kay, Russell E. King and Brandon M. McConnell

The purpose of this paper is to investigate US noncombatant evacuation operations (NEO) in South Korea and devise planning and management procedures that improve the efficiency of…

3143

Abstract

Purpose

The purpose of this paper is to investigate US noncombatant evacuation operations (NEO) in South Korea and devise planning and management procedures that improve the efficiency of those missions.

Design/methodology/approach

It formulates a time-staged network model of the South Korean noncombatant evacuation system as a mixed integer linear program to determine an optimal flow configuration that minimizes the time required to complete an evacuation. This solution considers the capacity and resource constraints of multiple transportation modes and effectively allocates the limited assets across a time-staged network to create a feasible evacuation plan. That solution is post-processed and a vehicle routing procedure then produces a high resolution schedule for each individual asset throughout the entire duration of the NEO.

Findings

This work makes a clear improvement in the decision-making and resource allocation methodology currently used in a NEO on the Korea peninsula. It immediately provides previously unidentifiable information regarding the scope and requirements of a particular evacuation scenario and then produces an executable schedule for assets to facilitate mission accomplishment.

Originality/value

The significance of this work is not relegated only to evacuation operations on the Korean peninsula; there are numerous other NEO and natural disaster related scenarios that can benefit from this approach.

Details

Journal of Defense Analytics and Logistics, vol. 4 no. 1
Type: Research Article
ISSN: 2399-6439

Keywords

Open Access
Article
Publication date: 26 December 2023

Mehmet Kursat Oksuz and Sule Itir Satoglu

Disaster management and humanitarian logistics (HT) play crucial roles in large-scale events such as earthquakes, floods, hurricanes and tsunamis. Well-organized disaster response…

Abstract

Purpose

Disaster management and humanitarian logistics (HT) play crucial roles in large-scale events such as earthquakes, floods, hurricanes and tsunamis. Well-organized disaster response is crucial for effectively managing medical centres, staff allocation and casualty distribution during emergencies. To address this issue, this study aims to introduce a multi-objective stochastic programming model to enhance disaster preparedness and response, focusing on the critical first 72 h after earthquakes. The purpose is to optimize the allocation of resources, temporary medical centres and medical staff to save lives effectively.

Design/methodology/approach

This study uses stochastic programming-based dynamic modelling and a discrete-time Markov Chain to address uncertainty. The model considers potential road and hospital damage and distance limits and introduces an a-reliability level for untreated casualties. It divides the initial 72 h into four periods to capture earthquake dynamics.

Findings

Using a real case study in Istanbul’s Kartal district, the model’s effectiveness is demonstrated for earthquake scenarios. Key insights include optimal medical centre locations, required capacities, necessary medical staff and casualty allocation strategies, all vital for efficient disaster response within the critical first 72 h.

Originality/value

This study innovates by integrating stochastic programming and dynamic modelling to tackle post-disaster medical response. The use of a Markov Chain for uncertain health conditions and focus on the immediate aftermath of earthquakes offer practical value. By optimizing resource allocation amid uncertainties, the study contributes significantly to disaster management and HT research.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 23 December 2020

Adam Redmer

The purpose of this paper is to develop an original model and a solution procedure for solving jointly three main strategic fleet management problems (fleet composition…

6649

Abstract

Purpose

The purpose of this paper is to develop an original model and a solution procedure for solving jointly three main strategic fleet management problems (fleet composition, replacement and make-or-buy), taking into account interdependencies between them.

Design/methodology/approach

The three main strategic fleet management problems were analyzed in detail to identify interdependencies between them, mathematically modeled in terms of integer nonlinear programing (INLP) and solved using evolutionary based method of a solver compatible with a spreadsheet.

Findings

There are no optimization methods combining the analyzed problems, but it is possible to mathematically model them jointly and solve together using a solver compatible with a spreadsheet obtaining a solution/fleet management strategy answering the questions: Keep currently exploited vehicles in a fleet or remove them? If keep, how often to replace them? If remove then when? How many perspective/new vehicles, of what types, brand new or used ones and when should be put into a fleet? The relatively large scale instance of problem (50 vehicles) was solved based on a real-life data. The obtained results occurred to be better/cheaper by 10% than the two reference solutions – random and do-nothing ones.

Originality/value

The methodology of developing optimal fleet management strategy by solving jointly three main strategic fleet management problems is proposed allowing for the reduction of the fleet exploitation costs by adjusting fleet size, types of exploited vehicles and their exploitation periods.

Details

Journal of Quality in Maintenance Engineering, vol. 28 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 10 of 125