Search results

11 – 20 of over 6000
Article
Publication date: 1 June 2010

Oscar Salgado, Oscar Altuzarra, Fernando Viadero and Alfonso Hernández

The purpose of this paper is to provide a general approach to compute, determine, and characterize the connectivity of the end‐effector of a robotic manipulator of arbitrary…

Abstract

Purpose

The purpose of this paper is to provide a general approach to compute, determine, and characterize the connectivity of the end‐effector of a robotic manipulator of arbitrary architecture, in any of the postures that it can reach.

Design/methodology/approach

The types of motion of this link, i.e. translational, screw motions, combinations thereof, and self‐motions, are first defined and determined, simplifying the understanding of the instantaneous behaviour of the manipulator, aided by the definition of an alternative input basis.

Findings

The characterization provided by this paper simplifies the understanding of the instantaneous behaviour of the manipulator. The mobility of the end‐effector is completely characterized by the principal screws of its motion, which can be obtained from a generalized eigenproblem. In the process, alternative demonstrations of well‐known properties of the principal screws are provided.

Research limitations/implications

The approach presented is focused on the kinetostatic analysis of manipulators, and therefore, subjected to rigid body assumption.

Practical implications

This paper proposes effective approaches for engineering analysis of robotic manipulators.

Originality/value

This approach is based on a pure theoretical kinematic analysis that can characterize computationally the motion that the end‐effector of an industrial robot of general morphology (i.e. serial, parallel, hybrid manipulators, complex mechanisms, redundant or non‐redundantly actuated). Also, being implemented on a general‐purpose software for the kinematic analysis of mechanisms, it provides visual information of the motion capabilities of the manipulator, highly valuable on its design stages.

Details

Engineering Computations, vol. 27 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 23 November 2019

Xiaoqi Jia, Sheng Yuan, Zuchao Zhu and Baoling Cui

Instantaneous radial force induced from unsteady flow will intensify vibration noise of the centrifugal pump, especially under off-design working conditions, which will affect…

Abstract

Purpose

Instantaneous radial force induced from unsteady flow will intensify vibration noise of the centrifugal pump, especially under off-design working conditions, which will affect safety reliability of pump operation in severe cases. This paper aims to conduct unsteady numerical computation on one centrifugal pump; thus, unsteady fluid radial force upon the impeller and volute is obtained, so as to study the evolution law of instantaneous radial force, the internal relationship between radial force and pressure pulsation, the relationship among each composition of radial force that the impeller received and the influence of leakage rate of front and back chamber on radial force.

Design/methodology/approach

The unsteady numerical simulation with SST k-ω turbulence model was carried out for a low specific-speed centrifugal pump using computational fluid dynamics codes FLUENT. The performance tests and pressure tests were conducted by a closed loop system. The performance curves and the pressure distribution from numerical simulation agree with that of the experiment conducted. The unsteady pressure distributions and the instantaneous radial forces induced from unsteady flow were analyzed under different flow rates. Contribution degrees of three components of the radial force on the impeller and the relation between the radial force and leakage rate were analyzed.

Findings

Radial force on the volute and pressure pulsation on the volute wall have the same distribution tendency, but in contrast to the distribution trend of the radial force on the impeller. In the component of radial force that the impeller received, radial force on the blade accounts for the main position. With the decrease of flow rate, ratio of the radial force on front and back casings will be increased; under large flow rate, vortex and flow blockage at volute section will enhance the pressure and radial force fluctuation greatly, and the pulsation degree may be much more intense than that of a smaller flow rate.

Originality/value

This paper revealed the relation of the radial force and the pressure pulsation. Meanwhile, contribution degrees of three components of the radial force on the impeller under different working conditions as well as the relation between the radial force and leakage rate of front and rear chambers were analyzed.

Details

Engineering Computations, vol. 37 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 26 July 2021

Yonghu Wang, Ray C. Chang and Wei Jiang

The purpose of this paper is to present a quick inspection method based on the post-flight data to examine static aeroelastic behavior for transport aircraft subjected to…

Abstract

Purpose

The purpose of this paper is to present a quick inspection method based on the post-flight data to examine static aeroelastic behavior for transport aircraft subjected to instantaneous high g-loads.

Design/methodology/approach

In the present study, the numerical approach of static aeroelasticity and two verified cases will be presented. The non-linear unsteady aerodynamic models are established through flight data mining and the fuzzy-logic modeling of artificial intelligence techniques based on post-flight data. The first and second derivatives of flight dynamic and static aeroelastic behaviors, respectively, are then estimated by using these aerodynamic models.

Findings

The flight dynamic and static aeroelastic behaviors with instantaneous high g-load for the two transports will be analyzed and make a comparison study. The circumstance of turbulence encounter of the new twin-jet is much serious than that of four-jet transport aircraft, but the characteristic of stability and controllability for the new twin-jet is better than those of the four-jet transport aircraft; the new twin-jet transport is also shown to have very small aeroelastic effects. The static aeroelastic behaviors for the two different types can be assessed by using this method.

Practical implications

As the present study uses the flight data stored in a quick access recorder, an intrusive structural inspection of the post-flight can be avoided. A tentative conclusion is to prove that this method can be adapted to examine the static aeroelastic effects for transport aircraft of different weights, different sizes and different service years in tracking static aeroelastic behavior of existing different types of aircraft. In future research, one can consider to have more issues of other types of aircraft with high composite structure weight.

Originality/value

This method can be used to assist airlines to monitor the variations of flight dynamic and static aeroelastic behaviors as a complementary tool for management to improve aviation safety, operation and operational efficiency.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 September 2019

Abu Hashan Md Mashud, Md. Rakibul Hasan, Hui Ming Wee and Yosef Daryanto

This paper aims to simultaneously consider an inventory model with price and advertisement dependent demand, non-instantaneous deterioration rate with preservation technology…

Abstract

Purpose

This paper aims to simultaneously consider an inventory model with price and advertisement dependent demand, non-instantaneous deterioration rate with preservation technology investment, partially backlogged shortages and trade credit.

Design/methodology/approach

This model considered a non-instantaneous deterioration, which starts after a certain storage period with a constant rate. The proposed model focused on two things. The first one is to reduce the deterioration rate by preservation technology investment, and the second one is using an appropriate trade credit period to maximize the total profit. The classical optimization technique is used to solve the problem.

Findings

The authors found that trade credit, advertising cost, preservation technology affect the total cost and selling price is one of the most important decision variables affecting the model.

Practical implications

This study provides a reference for a manufacturer and a retailer on making inventory decisions under different pricing, advertisement expense, preservation technology investment and credit strategies. Four cases are presented to illustrate the inventory model. Sensitivity analyses are performed to gain managerial insights for decision-making.

Originality/value

The study simultaneously considers a non-instantaneous deterioration inventory model, trade-credit, and preservation technology and advertisement policy. From our literature search, no researcher has undergone this type of study.

Article
Publication date: 8 September 2012

Anna Arutunow

The purpose of this paper is to focus on diversification between electrical parameters determined on the basis of instantaneous impedance measurements within the activation and…

Abstract

Purpose

The purpose of this paper is to focus on diversification between electrical parameters determined on the basis of instantaneous impedance measurements within the activation and reactivation scan of dissolution of sensitized AISI 304 stainless steel during a proceeding intergranular corrosion process.

Design/methodology/approach

The investigations were carried out by means of dynamic electrochemical impedance spectroscopy (DEIS). DEIS measurements were conducted “on‐line” while the samples were polarized in agreement with a measurement procedure presented in the ASTM G108‐94 standard, in order to guarantee conditions equivalent with the DL‐EPR tests performed on AISI 304 stainless steel.

Findings

Performed researches revealed the advantages of the DEIS technique over standard double‐loop electrochemical potentiokinetic reactivation (DL‐EPR) tests in the field of intergranular corrosion investigations. Application of the DEIS technique made it possible to trace instantaneous changes in the examined system's impedance versus potential during the intergranular corrosion process. The form of recorded DEIS spectra and obtained distribution of measurement frequencies within the reactivation potential range were equivalent to those obtained for pure iron dissolution in sulfuric acid medium. As a result, instantaneous changes of electrical double layer capacitance and charge transfer resistance as a function of potential have been obtained in the range of activation and reactivation scans.

Originality/value

The paper provides information regarding diversification between the electrical double layer capacitance and the charge transfer resistance determined for sensitized AISI 304 stainless steel with respect to polarization conditions during the standard DL‐EPR test, which were obtained in order to evaluate the susceptibility to intergranular corrosion.

Details

Anti-Corrosion Methods and Materials, vol. 59 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 January 2016

Chunyu Zhao, Shijun You, Hao Gao and Wei Yu

The purpose of this paper is to use numerical simulations to investigate the energy conversion performance and the flow and temperature structures inside horizontal tubes…

Abstract

Purpose

The purpose of this paper is to use numerical simulations to investigate the energy conversion performance and the flow and temperature structures inside horizontal tubes connected to a vertical manifold channel.

Design/methodology/approach

The simulations are performed for different flow rates and inlet temperatures using CFD.

Findings

In both the “flowing wind mode” and “upwind mode,” the inlet velocity is not infinitely small under the influence of natural convection; however, such small inlet velocities cannot be achieved in practice and are of no practical significance. In the “flowing wind mode,” the appropriate velocity for achieving high efficiency is 0.01-0.02 m/s. In the “upwind mode,” the appropriate velocity for obtaining high efficiency is 0.1-0.2 m/s. A high inlet temperature can lead to high efficiency; therefore, a large temperature difference and a small flow can be used in actual designs.

Originality/value

The energy conversion performance and flow structures inside evacuated tubular collectors were investigated using CFD for different operating conditions, notably in the “following wind mode” and the “upwind mode.”

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2008

Mariusz Sobolak and Grzegorz Budzik

The purpose of this paper is to determine the instantaneous contact area in a gearbox using rapid prototyping.

Abstract

Purpose

The purpose of this paper is to determine the instantaneous contact area in a gearbox using rapid prototyping.

Design/methodology/approach

The determination of the contact area utilizes one of the RP techniques, i.e. stereolithography. Stereolithography enables the making of gears with complex profiles, which are difficult to obtain by means of other machining methods. A model of a bevel gearbox with Gleason spiral generated modify roll (Gleason SGM) gears with circular‐arc profiles of teeth is applied as an example for testing. A prototype of the gearbox was made using SLA 250 apparatus.

Findings

Correct mating of gears and their kinematical precision depend on the shape and size of the instantaneous contact area, as well as changes during the turning of gears. Contact between gear surfaces of a geometrically ideal gearbox occurs at a point or line, but, because of a deformability of mating flanks teeth, in reality it is always a certain surface. This paper presents research on the instantaneous contact area with area on the surface of a flank tooth, which is in contact with the mating surface of another tooth at a specific moment.

Originality/value

The described method in the paper enables a dynamic determination of the mating area gearbox. Existing experimental methods enable only a static observation of the mating area. A stand test was built and enables an exact meshing of mating gears. Gears were made of transparent material, SL‐5170, which enables observation of the instantaneous contact area.

Details

Rapid Prototyping Journal, vol. 14 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 November 2021

Mohamed Attia and Jyoti K. Sinha

The purpose of this paper is to analyze the reliability of the quantitative risk model used for planning inspection and maintenance activities. The objective is to critically…

Abstract

Purpose

The purpose of this paper is to analyze the reliability of the quantitative risk model used for planning inspection and maintenance activities. The objective is to critically discuss the factors that contribute to the probability and consequence of failure calculations.

Design/methodology/approach

The case study conducted using one of the most widely deployed risk models in the oil and gas industry where a full assessment was performed on an offshore gas producing platform.

Findings

The generic failure frequencies used as the basis for calculating the probability of failure are set at a value representative of the refining and petrochemical industry's failure data. This failure database does not cover offshore. The critical discussion indicated the lack of basis of the coefficient of variances, prior probabilities and conditional probabilities. Moreover, the risk model does not address the distribution of thickness measurements, corrosion rates and inspection effectiveness, whereas only overall deterministic values are used; this requires judgment to determine these values. Probabilities of ignition, probabilities of delayed ignition and other probabilities in Level 1 event tree are found selected based on expert judgment for each of the reference fluids and release types (i.e. continuous or instantaneous). These probabilities are constant and independent of the release rate or mass and lack of constructed model. Defining the release type is critical in the consequence of the failure methodology, whereas the calculated consequences differ greatly depending on the type of release, i.e. continuous or instantaneous. The assessment results show that both criteria of defining the type of release, i.e. continuous or instantaneous, do not affect the calculations of flammable consequences when the auto-ignition likely is zero at the storage temperature. While, the difference in the resulted toxic consequence was more than 31 times between the two criteria of defining the type of release.

Research limitations/implications

There is a need to revamp this quantitative risk model to minimize the subjectivity in the risk calculation and to address the unique design features of offshore platforms.

Originality/value

This case study critically discuss the risk model being widely applied in the O&G industry and demonstrates to the end-users the subjectivity in the risk results. Hence, be vigilant when establishing the risk tolerance/target for the purpose of inspection and maintenance planning.

Details

Journal of Quality in Maintenance Engineering, vol. 29 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Open Access
Article
Publication date: 13 March 2018

Isabel González Fernández and Salvador Cruz Rambaud

The purpose of this paper is to introduce the main measures of inconsistency in the context of intertemporal choice and to identify the relationships between them (more…

3476

Abstract

Purpose

The purpose of this paper is to introduce the main measures of inconsistency in the context of intertemporal choice and to identify the relationships between them (more specifically, the measures by Prelec, Takahashi and Rohde). In effect, Thaler (1981), awarded the Nobel Prize in Economics 2017, argued that when a preference must be expressed between two reward options, some people may reverse their original preference when a significant delay is introduced before the reward is to be received. This anomaly is known as inconsistency in intertemporal choice.

Design/methodology/approach

After a revision of the existing literature and by using the methods from mathematical calculus, the authors have derived the logical relationships between the measures presented in this paper.

Findings

The main contribution of this paper is the proposal of a novel parameter, the so-defined ratio of two instantaneous discount rates, which the authors call the instantaneous variation rate, which allows relating some other measures of inconsistency, namely the measures described by Prelec and Rohde. A limitation of this paper is the unavailability of empirical information about the inconsistency measures needed to substantiate the theoretical findings. Indeed, this paper has social implications because recent behavioral and neuroeconomic studies have shown the existence of preference reversal or time inconsistency in other areas. The authors’ models can be implemented in these fields in order to better analyze the situations of inconsistency.

Originality/value

The originality of this paper lies in the authors’ aim to bring some order to the proposed measures of inconsistency which have arisen as a result of the different approaches adopted.

Details

European Journal of Management and Business Economics, vol. 27 no. 3
Type: Research Article
ISSN: 2444-8494

Keywords

Article
Publication date: 6 July 2010

Hamed Sadeghi, Mahmoud Mani and S.M. Hossein Karimian

The primary purpose of this paper is to investigate the characteristics of the unsteady flow field in the wake of Eppler‐361 airfoil undergoing harmonic pitch oscillation in both…

1139

Abstract

Purpose

The primary purpose of this paper is to investigate the characteristics of the unsteady flow field in the wake of Eppler‐361 airfoil undergoing harmonic pitch oscillation in both pre‐stall and post‐stall regimes.

Design/methodology/approach

Experimental measurements were carried out to study the characteristics of the unsteady flow field within the wake of an airfoil. All of the experiments were conducted in a low‐speed wind tunnel, and the velocity field was measured by a hot‐wire anemometry. The airfoil was given a harmonic pitching motion about its half chord axis at two reduced frequencies of 0.091 and 0.273. All experimental data were taken at the oscillation amplitude of 8°. During the experiments, the mean angle of attack was altered from 2.5 to 10° that this made it possible to study the wake in both pre‐stall and post‐stall regimes.

Findings

From the results, it can be concluded that different velocity profiles are formed in the wake at different phase angles. In addition, the hysteresis of the velocity field in the wake is captured between increasing and decreasing incidences. It is also found that the velocity field in the wake is strongly affected by the operating conditions of the airfoil, e.g. mean angle of attack, reduced frequency and instantaneous angle of attack. Huge variations in the profiles of the wake are observed at high instantaneous angles of attack when the mean angle of attack is 10°, i.e. when the airfoil experiences significant oscillations beyond the static stall. It is concluded that this is due to dynamic stall phenomenon.

Practical implications

Findings of the present study give valuable information, which can be used to characterize wakes of micro air vehicles, helicopter's rotor blades, and wind turbine blades. In addition to this, present findings can be used to predict dynamic stall of the above applications.

Originality/value

The paper is the first to investigate the unsteady wake of Eppler‐361 airfoil and to predict the dynamic stall phenomenon of this airfoil.

Details

Aircraft Engineering and Aerospace Technology, vol. 82 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

11 – 20 of over 6000