Search results

1 – 10 of 71
Open Access
Article
Publication date: 15 August 2016

Belen Begines, Andrew L. Hook, Morgan R. Alexander, Christopher J. Tuck and Ricky D. Wildman

This paper aims to print 3D structures from polymers that resist bacterial attachment by reactive jetting of acrylate monomers.

2439

Abstract

Purpose

This paper aims to print 3D structures from polymers that resist bacterial attachment by reactive jetting of acrylate monomers.

Design/methodology/approach

The first step towards printing was ink development. Inks were characterised to carry out an estimation of their potential printability using the Z parameter to predict stable jetting conditions. Printability conditions were optimised for each ink using a Dimatix DMP-2800, which enabled 3D structures to be fabricated.

Findings

UV photo-initiated polymers, which resist bacterial attachment, were found to be printable using piezo-based inkjet printers. The waveform required for each ink depends on the value of the Z parameter. Once the waveform and the printability parameters were optimised, 3D objects were fabricated.

Research limitations/implications

This methodology has been confirmed as an effective method to 3D print materials that have been demonstrated to be bacteria resistant. However, ink curing depends on modification of some parameters (such as photoinitiator concentration or UV exposure time) which would result in an improvement of the curing process post jetting.

Social implications

The combination of inkjet based 3D printing with new materials resistant to bacterial attachment means the possibility of building customised medical devices with a high level of complexity and bespoke features can be fully realised. The scope and variability of the devices produced will exceed what can be achieved using standard fabrication methodologies and can be applied to reduce the incidence of device associated infections and to address increased morbidity, mortality and health care costs associated with nosocomial infections.

Originality/value

In this paper, the novel use of materials that resist bacterial attachment has been described to build 3D structures using material jetting. Its value lies on the potential impact this methodology could produce in the biomedical device and research fields.

Details

Rapid Prototyping Journal, vol. 22 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 19 March 2020

Laura Jasińska, Krzysztof Szostak, Milena Kiliszkiewicz, Piotr Słobodzian and Karol Malecha

The main purpose of this study is to test the performance of the ink-jet printed microwave resonant circuits on Low temperature co-fired ceramics (LTCC) substrates combined with…

2380

Abstract

Purpose

The main purpose of this study is to test the performance of the ink-jet printed microwave resonant circuits on Low temperature co-fired ceramics (LTCC) substrates combined with microfluidic channels for sensor applications. Normally, conductive patterns are deposited on an LTCC substrate by means of the screen-printing technique, but in this paper applicability of ink-jet printing in connection with LTCC materials is demonstrated.

Design/methodology/approach

A simple microfluidic LTCC sensor based on the microstrip ring resonator was designed. It was assumed the micro-channel, located under the ring, was filled with a mixture of DI water and ethanol, and the operating frequency of the resonator was tuned to 2.4 GHz. The substrate was fabricated by standard LTCC process, and the pattern of the microstrip ring resonator was deposited over the substrate by means of an ink-jet printer. Performance of the sensor was assessed with the use of various volumetric concentrations of DI water and ethanol. Actual changes in concentration were detected by means of microwave measurements.

Findings

It can be concluded that ink-jet printing is a feasible technique for fast fabrication of micro-strip circuits on LTCC substrates, including microfluidic components. Further research needs to be conducted to improve the reliability, accuracy and performance of this technique.

Originality/value

The literature shows the use of ink-jet printing for producing various conductive patterns in different applications. However, the idea to replace the screen-printing with the ink-jet printing on LTCC substrates in connection with microwave-microfluidic applications is not widely studied. Some questions concerning accuracy and reliability of this technique are still open.

Details

Circuit World, vol. 46 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Open Access
Article
Publication date: 30 September 2019

Andrea Mantelli, Marinella Levi, Stefano Turri and Raffaella Suriano

The purpose of this study is to demonstrate the potential of three-dimensional printing technology for the remanufacturing of end-of-life (EoL) composites. This technology will…

2764

Abstract

Purpose

The purpose of this study is to demonstrate the potential of three-dimensional printing technology for the remanufacturing of end-of-life (EoL) composites. This technology will enable the rapid fabrication of environmentally sustainable structures with complex shapes and good mechanical properties. These three-dimensional printed objects will have several application fields, such as street furniture and urban renewal, thus promoting a circular economy model.

Design/methodology/approach

For this purpose, a low-cost liquid deposition modeling technology was used to extrude photo-curable and thermally curable composite inks, composed of an acrylate-based resin loaded with different amounts of mechanically recycled glass fiber reinforced composites (GFRCs). Rheological properties of the extruded inks and their printability window and the conversion of cured composites after an ultraviolet light (UV) assisted extrusion were investigated. In addition, tensile properties of composites remanufactured by this UV-assisted technology were studied.

Findings

A printability window was found for the three-dimensional printable GFRCs inks. The formulation of the composite printable inks was optimized to obtain high quality printed objects with a high content of recycled GFRCs. Tensile tests also showed promising mechanical properties for printed GFRCs obtained with this approach.

Originality/value

The novelty of this paper consists in the remanufacturing of GFRCs by the three-dimensional printing technology to promote the implementation of a circular economy. This study shows the feasibility of this approach, using mechanically recycled EoL GFRCs, composed of a thermoset polymer matrix, which cannot be melted as in case of thermoplastic-based composites. Objects with complex shapes were three-dimensional printed and presented here as a proof-of-concept.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 1 July 2020

Milena Kiliszkiewicz, Dariusz Przybylski, Jan Felba and Ryszard Korbutowicz

The purpose of this paper is to analyze the individual steps during the printing of capacitor structures. The method of substrate preparation, the obtained roughness of conductive…

748

Abstract

Purpose

The purpose of this paper is to analyze the individual steps during the printing of capacitor structures. The method of substrate preparation, the obtained roughness of conductive and dielectric layers are examined. Moreover, the capacitances of the obtained capacitors were examined.

Design/methodology/approach

Surface roughness and microscopic analysis were used to assess the quality of printed conductive structures. Two criteria were used to assess the quality of printed dielectric structures: the necessary lack of discontinuity of layers and minimal roughness. To determine the importance of printing parameters, a draft experimental method was proposed.

Findings

The optimal way to clean the substrate has been determined. The most important parameters for the dielectric layer (i.e. drop-space, table temperature, curing time and temperature) were found.

Research limitations/implications

If dielectric layers are printed correctly, most problems with printing complex electronic structures (transistors, capacitors) will be eliminated.

Practical implications

The tests performed identified the most important factors for dielectric layers. Using them, capacitors of repeatable capacity were printed.

Originality/value

In the literature on this subject, no factors were found which were responsible for obtaining homogeneous dielectric layers.

Details

Soldering & Surface Mount Technology, vol. 32 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Open Access
Article
Publication date: 4 July 2022

Kai Zhuang, Jieru Xiao and Xiaolong Yang

The purpose of this paper is to show that the droplet impact phenomenon is important for the advancement of industrial technologies in many fields such as spray cooling and ink

Abstract

Purpose

The purpose of this paper is to show that the droplet impact phenomenon is important for the advancement of industrial technologies in many fields such as spray cooling and ink jet printing. Droplet bouncing on the nonwetting surfaces is a special phenomenon in the impact process which has attracted lots of attention.

Design/methodology/approach

In this work, the authors fabricated two kinds of representative nonwetting surfaces including superhydrophobic surfaces (SHS) and a slippery liquid-infused porous surface (SLIPS) with advanced UV laser processing.

Findings

The droplet bouncing behavior on the two kinds of nonwetting surfaces were compared in the experiments. The results indicate that the increasing Weber number enlarges the maximum droplet spreading diameter and raises the droplet bounce height but has no effect on contact time.

Originality/value

In addition, the authors find that the topological SHS and SLIPS with the laser-processed microwedge groove array produce asymmetric droplet bouncing with opposite offset direction. Microdroplets can be continuously transported without any additional driving force on such a topological SLIPS. The promising method for manipulating droplets has potential applications for the droplet-based microfluidic platforms.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 25 July 2022

Cara Greta Kolb, Maja Lehmann, Johannes Kriegler, Jana-Lorena Lindemann, Andreas Bachmann and Michael Friedrich Zaeh

This paper aims to present a requirements analysis for the processing of water-based electrode dispersions in inkjet printing.

927

Abstract

Purpose

This paper aims to present a requirements analysis for the processing of water-based electrode dispersions in inkjet printing.

Design/methodology/approach

A detailed examination of the components and the associated properties of the electrode dispersions has been carried out. The requirements of the printing process and the resulting performance characteristics of the electrode dispersions were analyzed in a top–down approach. The product and process side were compared, and the target specifications of the dispersion components were derived.

Findings

Target ranges have been identified for the main component properties, balancing the partly conflicting goals between the product and the process requirements.

Practical implications

The findings are expected to assist with the formulation of electrode dispersions as printing inks.

Originality/value

Little knowledge is available regarding the particular requirements arising from the systematic qualification of aqueous electrode dispersions for inkjet printing. This paper addresses these requirements, covering both product and process specifications.

Details

Rapid Prototyping Journal, vol. 28 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 28 January 2022

Kiranmai Uppuluri and Dorota Szwagierczak

The purpose of this work was to characterize NiMn2O4 spinel-based thermistor powder, to use it in screen printing technology to fabricate temperature sensors, to study their…

1066

Abstract

Purpose

The purpose of this work was to characterize NiMn2O4 spinel-based thermistor powder, to use it in screen printing technology to fabricate temperature sensors, to study their performance for different sintering temperatures of thermistor layer, with and without insulative cover, as well as to investigate stability of the fabricated thermistors and their applicability in water quality monitoring.

Design/methodology/approach

After the characterization of starting NiMn2O4 spinel-based thermistor powder, it was converted to thick film paste which was screen printed on alumina substrate. Thermistor layers were sintered at four different sintering temperatures: 980°C, 1050°C, 1150°C and 1290°C. An interdigitated pattern of Ag-Pd conductive layer was used to reduce the resistance. Temperature-resistance characteristics were investigated in air and water, with and without insulative cover atop the thermistor layer. Stability of the fabricated thermistors after aging at 120°C for 300 h was also examined.

Findings

Thick film NiMn2O4 spinel thermistors, prepared by screen printing and sintering in the temperature range 980°C–1290°C, exhibited good negative temperature coefficient (NTC) characteristics in the temperature range −30°C to 145°C, including high temperature coefficient of resistance, good stability and applicability in water.

Originality/value

This study explores the range of sintering temperature that can be applied for NiMn2O4 thermistor thick films without compromising on the temperature sensing performance in air and water, as well as stability of the thermistors after aging at elevated temperatures.

Details

Sensor Review, vol. 42 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 26 June 2023

Sanna Sekki, Hannele Kauppinen-Räisänen, Eliisa Kylkilahti and Minna Autio

Research has largely disregarded consumer–packaging interaction in contexts other than retail. Focusing on the powerful cue of colour and consumers’ pleas for sustainability and…

1432

Abstract

Purpose

Research has largely disregarded consumer–packaging interaction in contexts other than retail. Focusing on the powerful cue of colour and consumers’ pleas for sustainability and drawing on the customer journey and moments of consumption, this study investigates how packaging colour meanings are redefined from retail to home and how the meaning of sustainability for colour transforms.

Design/methodology/approach

A qualitative methodology was employed with 27 informants, who were interviewed in pairs or in small groups of three.

Findings

First, colour meanings emerge outside the retail context, confirming the idea of the packaging journey. Colours are dynamic, as meanings are redefined throughout the voyage. In retail, colour conveys brand, product, environmental and origin-related meanings, while at home it conveys product, food- and health-related meanings. At the end of the journey, colour communicates disposal, environmental, health and origin-related meanings. Second, the meaning of sustainability for colour transforms during the voyage from being conveyed by a colour hue to being perceived as a material and, therefore, as a waste and recycling concern.

Originality/value

The study adds insight into the role of colour in the packaging life cycle, wherein colour transforms from a visual packaging cue to an issue of materiality. The recyclability of colours is a prevailing sustainability issue that deserves attention within the packaging industry. The study argues that although the consumer–packaging interaction in the retail context is essential, managers should recognise that the interaction continues with colours from in-store purchase decisions to consumers’ homes (use and recycling).

Details

International Journal of Retail & Distribution Management, vol. 51 no. 13
Type: Research Article
ISSN: 0959-0552

Keywords

Open Access
Article
Publication date: 28 September 2023

Yingying Yu, Wencheng Su and Guifeng Liu

This article explores the scientific construction of library olfactory space, based on the case of the olfactory space in the Jiangsu University library. It specifically focuses…

Abstract

Purpose

This article explores the scientific construction of library olfactory space, based on the case of the olfactory space in the Jiangsu University library. It specifically focuses on understanding the interaction between the physical architectural space of the library and users’ olfactory perception and behavioral activities, with the ultimate goal of creating a deeply integrated olfactory experience in the Jiangsu University Library.

Design/methodology/approach

In this article, an empirical research method was used to gather perceptions from 30 university student users regarding the library olfactory space and to understand their olfactory preferences and requirements for its construction. Through qualitative analysis of the interview texts, the study identified correlations between user perceptions and elements of the library olfactory space.

Findings

The qualitative analysis of user interview texts and results from the library olfactory space design experiment contributed to the design proposal for the Jiangsu University Library olfactory space. The design proposal for the Jiangsu University Library olfactory space is provided and includes library architecture, activity context, functional services, olfactory experience design and technological applications.

Research limitations/implications

This case study takes the environment, development strategy and user needs of the Jiangsu University Library as its unique research background and as such is not universal or generalizable to other libraries.

Originality/value

This article differs from others by advocating for the innovative architectural spatial design of libraries through olfactory experience, breaking the traditional perception of libraries as solely through visual and auditory senses.

Details

Digital Transformation and Society, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2755-0761

Keywords

Open Access
Article
Publication date: 3 January 2023

Tariq Al Habsi, Hussein Al Khabori, Sara Al Qasmi, Tasnim Al Habsi, Mohamed Al Mushaiqri, Srijit Das and Srinivasa Rao Sirasanagandla

Fingerprints and blood samples are important for the identification of individuals and criminals. The present study aims to identify the predominant fingerprint patterns and the…

1887

Abstract

Purpose

Fingerprints and blood samples are important for the identification of individuals and criminals. The present study aims to identify the predominant fingerprint patterns and the association between the fingerprint patterns and ABO–Rh blood groups in Omani population.

Design/methodology/approach

A cross-sectional study was conducted on 200 Omani individuals aged 18 years (104 males and 96 females). The imprints of all right and left-hand fingers were taken, and the types of the fingerprints were determined using a standard protocol. The blood group of all the subjects was recorded. Chi-square test was performed to identify the association between the fingerprint patterns and the ABO and Rh blood groups.

Findings

The loop fingerprint pattern was the most common in Omani subjects (49.4%), followed by whorl (44.9%) and arch (5.7%) pattern. A significant association (p < 0.001) was found between gender and fingerprint pattern. The loop was the highest occurring pattern in the females (54.6%), while the whorl was more in males (50.0%). The whorl pattern was the most common in the AB+ and O− groups. The loop was a predominant pattern in the A+, A−, B+, B− and O+ groups. The Chi-square test also revealed a significant correlation between different fingerprint patterns and blood groups of the subjects (p < 0.001).

Originality/value

The present study is an outcome of undergraduate student's research project thesis for the Doctor of Medicine (MD) program. The results of the present study may help in creating a data bank for biometrics, which can be useful for diagnosing associated diseases and also help in identification of individuals.

Details

Arab Gulf Journal of Scientific Research, vol. 41 no. 3
Type: Research Article
ISSN: 1985-9899

Keywords

1 – 10 of 71