Search results

1 – 10 of 503
Article
Publication date: 22 January 2021

Saira Faisal, Muhammad Ali, Sheraz Hussain Siddique and Long Lin

Pretreatment of fabric with a number of chemicals and auxiliaries is a prerequisite for inkjet printing. Owing to the rapidly increasing use of inkjet printing for textile…

Abstract

Purpose

Pretreatment of fabric with a number of chemicals and auxiliaries is a prerequisite for inkjet printing. Owing to the rapidly increasing use of inkjet printing for textile fabrics, the study of the effects of process variables on various characteristics of the resulting print has drawn considerable interest recently. The purpose of this paper is to study the effects of different variables associated with the inkjet printing process on the quality of the resulting print. Specifically, the effects of chemicals and auxiliaries used in the pretreatment of the fabric prior to printing and factors such as steaming time were studies.

Design/methodology/approach

In the present study, which forms a part of a larger study by the authors, the influence of the nature of thickener, the amounts of thickener, urea and alkali, pH of the pretreatment liquor and the duration of steaming on ink penetration into the printed fabrics and the ink spreading across the fabrics was studied. The nature of ink penetration and ink spreading are known to have pronounced effects on the quality and, in turn, the overall appearance of the resulting print. A set of experiments based on a blocked 25–1 fractional factorial design with four centre points were conducted to evaluate the role of the aforementioned five variables. Ink penetration was quantified on the basis of the principles of Kebulka-Munk theory while ink spreading was analysed by image analysis.

Findings

Detailed statistical analyses of the experimental data obtained show that different thickeners perform differently and can have a marked influence on ink penetration and ink spreading. In the case of polyacrylic acid-based thickener, changing the levels of the factors has a marked effect on ink penetration and in-turn on ink spreading. In the case of polyacrylamide (PAM)-based thickener, on the other hand, the effect of changing the levels of various factors on the ink penetration and ink spreading is considerably less pronounced. In addition, PAM treated samples exhibited better performance in terms of ink penetration and spreading.

Originality/value

This study provides useful information for textile printers and highlights the importance of selecting the right type of thickener to make the printing process and the quality of the resulting print more predictable and controllable.

Details

Pigment & Resin Technology, vol. 50 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 25 May 2010

H. Abd El‐Wahab, M.M. El‐Molla and L. Lin

The purpose of this paper is to prepare and characterise various ink formulations for inkjet printing on nylon 66 carpet.

Abstract

Purpose

The purpose of this paper is to prepare and characterise various ink formulations for inkjet printing on nylon 66 carpet.

Design/methodology/approach

Various ink formulations were prepared using CI Acid Red 57, synthetic thickeners (BYK425 and BYK420), ethylene glycol, diethylene glycol, isopropanol with auxiliaries. The inks were characterised for their rheological, wetting and storage stability properties. The inks were jetted using a Printos P16 drop‐on‐demand jet print‐head onto nylon 66 carpet materials. The printed images were characterised using an ImageXpert system.

Findings

It is found that the inks containing the synthetic thickeners at the optimum ratio give good printing and image properties, such as optical density, drop size, and depth of penetration into the substrate at pH 4‐5. The optimised ink formulation is found to have good storage stability.

Research limitations/implications

The study focuses on ink formulations based on CI Acid Red 57. Ink formulations based on other colorants could also be studied in order to assess the applicability of the ink formulation system found for other colorants.

Practical implications

The ink formulations developed could find use in industrial scale printing.

Originality/value

Low cost ink formulations for printing of nylon carpets are novel.

Details

Pigment & Resin Technology, vol. 39 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 20 October 2021

Ali A. Ali, Maha Mohammed Elsawy, Salem S. Salem, Ahmed A. El-Henawy and Hamada Abd El-Wahab

Paper aims to preparation of new acid disperse dyes based on thiadiazol derivatives and evaluation of their use as antimicrobial colorants in digital transfer-printing ink

Abstract

Purpose

Paper aims to preparation of new acid disperse dyes based on thiadiazol derivatives and evaluation of their use as antimicrobial colorants in digital transfer-printing ink formulations for printing onto polyester fabric substrates.

Design/methodology/approach

New disperse dyes based on 1,3,4 - thiadiazol derivative (dyes 1–3) were prepared and evaluated by different analysis then formulated as colored materials in the ink formulations. The viscosity, dynamic surface tension and particle size distribution of the prepared inks were measured. The printed polyester fabric substrates were tested using a variety of tests, including light fastness, washing, alkali perspiration and Crock fastness, as well as depth of penetration. Density-functional theory (DFT) calculations were carried out at the Becke3-Lee-Yang-parr (B3LYP) level using the 6–311** basis set, and the biological activity of the prepared disperse dyes was investigated.

Findings

The obtained results of the physical of the prepared ink revealed that thiadiazol disperse ink is a promising ink formulation for polyester printing and agrees with the quality of the printed polyester fabric. The optimization geometry for molecular structures agreed with the analysis of these compounds. The HOMO/LUMO and energy gap of the studied system were discussed. The molecular docking analysis showed strong interaction with DNA Gyrase and demonstrated to us the high ability of these inks to act as antimicrobial agents.

Practical implications

The prepared inks containing the prepared thiadiazol disperse dye were high-performance and suitable for this type of printing technique, according to the results. The prepared inks resist the growth of microorganisms and thus increase the ink's storage stability.

Originality/value

The prepared disperse dyes based on 1,3,4 - thiadiazol derivative (dyes 1–3) can be a promising colorant in different applications, like some types of paint formulations and as a colorant in printing of different fabric substrates.

Details

Pigment & Resin Technology, vol. 52 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 September 2022

Hamada Abdelwahab, Fatimah A.M. Al-Zahrani, Ali A. Ali, Ammar Mahmoud and Long Lin

This paper aims to synthesize new screen-printing ink formula based on new derivatives of azo thiadiazol disperse dyes and evaluate their characteristics after being printed on…

Abstract

Purpose

This paper aims to synthesize new screen-printing ink formula based on new derivatives of azo thiadiazol disperse dyes and evaluate their characteristics after being printed on polyester fabric substrates.

Design/methodology/approach

New dispersed dyes based on 1, 3, 4-Thiadiazole derivatives (dyes 1 and 2) were prepared and confirmed by different analyses, infrared (IR), mass and nuclear magnetic resonance (NMR) spectroscopy, and then formulated as colored materials in the screen-printing ink formulations. Printing pastes containing the prepared dyestuffs and other ingredients were used for printing polyester using screen-printing or traditional printing. The characteristics of printed polyester fabric substrates were measured by color measurements such as a*, b*, L*, C*, E, Ho, R% and color strength, as well as light, washing, crock and alkali perspiration fastness, and finally, the depth of penetration was evaluated.

Findings

The prepared 1, 3, 4-Thiadiazole derivatives (dyes 1 and 2) were obtained from the reaction of 5,5’-(1,4-phenylene)bis(1,3,4-Thiadiazole-2-amine) with resorcinol and m-toluidine as a coupling component. The suitability of the prepared dyestuffs for silk screen-printing on polyester fabrics has been investigated. The prints obtained from a formulation containing dye 1 possess high color strength as well as good overall fastness properties if compared to those obtained using dye 2.

Practical implications

The method of synthesis of the new dyestuffs and screen-printing ink provides a simple and practical solution to prepare some new heterocyclic disperse azo dyes, and they are formulated in the screen-printing inks for printing on a polyester fabric substrate.

Originality/value

The prepared disperse dyes based on 1,3,4-Thiadiazole derivatives (dyes 1 and 2) could be used in textile printing of polyester on an industrial scale.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 November 2021

Chenfei Zhao, Jun Wang and Lini Lu

In flexible electronics applications, organic inks are mostly used for inkjet printing. Three-dimensional (3 D) printing technology has the advantages of low cost, high speed and…

Abstract

Purpose

In flexible electronics applications, organic inks are mostly used for inkjet printing. Three-dimensional (3 D) printing technology has the advantages of low cost, high speed and good precision in modern electronic printing. The purpose of this study is to solve the high cost of traditional printing and the pollution emissions of organic ink. It is necessary to develop a water-based conductive ink that is easily degradable and can be 3 D printed. A nano-silver ink printed circuit pattern with high precision, high conductivity and good mechanical properties is a promising strategy.

Design/methodology/approach

The researched nano-silver conductive ink is mainly composed of silver nanoparticles and resin. The effect of adding methyl cellulose on the ink was also explored. A simple 3 D circuit pattern was printed on photographic paper. The line width, line length, line thickness and conductivity of the printed circuit were tested. The influence of sintering temperature and sintering time on pattern resistivity was studied. The relationship between circuit pattern bending performance and electrical conductivity is analyzed.

Findings

The experimental results show that the ink has the characteristics of low silver content and good environmental protection effect. The printing feasibility of 3 D printing circuit patterns on paper substrates was confirmed. The best printing temperature is 160°C–180°C, and the best sintering time is 30 min. The circuit pattern can be folded 120°, and the cycle is folded more than 60 times. The minimum resistivity of the circuit pattern is 6.07 µΩ·cm. Methyl cellulose can control the viscosity of the ink. The mechanical properties of the pattern have been improved. The printing method of 3 D printing can significantly reduce the sintering time and temperature of the conductive ink. These findings may provide innovation for the flexible electronics industry and pave the way for alternatives to cost-effective solutions.

Originality/value

In this study, direct ink writing technology was used to print circuit patterns on paper substrates. This process is simple and convenient and can control the thickness of the ink layer. The ink material is nonpolluting to the environment. Nano-silver ink has suitable viscosity and pH value. It can meet the requirements of pneumatic 3 D printers. The method has the characteristics of simple process, fast forming, low cost and high environmental friendliness.

Details

Rapid Prototyping Journal, vol. 28 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 December 2001

Ana Arias Terry

Electronic ink and reusable electronic paper technology are painting their way out of R&D labs and into the world of signage, e‐books, and other hand‐held devices. This paper…

2070

Abstract

Electronic ink and reusable electronic paper technology are painting their way out of R&D labs and into the world of signage, e‐books, and other hand‐held devices. This paper examines the evolving technology, the companies leading the efforts, and the possible applications and implications for publishing and academia. It offers some insights on market speculation from members of the professional and academic publishing community, industry analysts and venture capitalists. The paper concludes by making a few observations on current and future technological trends and their impact on the higher education market and society.

Details

Library Hi Tech, vol. 19 no. 4
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 20 October 2021

Osama A. Hakeim, Samah A. Rashed and Hanan Diab

The present research aims to manage the formulations of pigment-based inks containing aminopropyl/vinyl/silsesquioxane (APSV) as a pigment binding agent for inkjet printing of…

Abstract

Purpose

The present research aims to manage the formulations of pigment-based inks containing aminopropyl/vinyl/silsesquioxane (APSV) as a pigment binding agent for inkjet printing of polyester as a commercial trial for the printing of polyester as a single-step process.

Design/methodology/approach

The proposed formulations incorporated APSV by using the mini-emulsion technique at a low relieving temperature under the thermal initiation or UV radiation of vinyl-terminated groups in APSV. In this study, the storage stability of inks with regard to physical properties was broadly examined. Moreover, the color performance, including colorimetric data, color fixation and fastness properties of printed fabrics was evaluated.

Findings

The results indicated that the inks containing APSV were formulated and were stable in terms of particle size, dispersion stability, surface tension and viscosity over a period of one month and for four freeze/thaw cycles. APSV successfully fixed the pigment-based inkjet inks on polyester fabric and could achieve a significantly higher color performance and degree of fixation than the formulated inks without APSV.

Research limitations/implications

It could also fulfill all the physical properties of ink prerequisites over storing and eliminating all challenges in improving the performance and utilization of inkjet printing.

Practical implications

APSV can also be used as a pigment binding agent to formulate inks for inkjet printing of polyester fabrics as the authors’ past examination for inkjet printing of polyester fabrics post-treated with APSV.

Social implications

This study eliminates the noteworthy challenges in formulating the pigment-based inks for textile applications by incorporation of a binder while keeping up the necessary viscosity profile for a specific print head.

Originality/value

This study addressed all the issues arising from the complex nature and very challenging requirements of inkjet inks.

Details

Pigment & Resin Technology, vol. 51 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 November 2021

Merve Engin, Sinan Sönmez and Mustafa Batuhan Kurt

The purpose of this paper is to investigate the influences of fibre lengths and a given range of paper grammages on the fundamental properties of unprinted and printed papers by…

Abstract

Purpose

The purpose of this paper is to investigate the influences of fibre lengths and a given range of paper grammages on the fundamental properties of unprinted and printed papers by using mineral oil-based offset printing inks and also evaluate these results in terms of printing and tensile characteristics.

Design/methodology/approach

A design research approach has been based on the production of various laboratory handmade papers and their printing process with mineral oil-based offset printing inks. The analysis of mechanical and structural tests results of the unprinted and the printed papers have been evaluated.

Findings

This study is confirmed that the mineral oil-based offset printing inks can be easily applied to the surface of papers having different grammages and pulp contents. An increase was observed in the tensile index values of the papers with the printing process, and these increases were more evident (about 80%) particularly in low grammage papers having high short fibre content.

Originality/value

The originality of this work is based on understanding and comparing the effects of grammage and the effect of pulp contents (having long and short fibre) on tensile characteristics of printed and unprinted handsheets.

Details

Pigment & Resin Technology, vol. 52 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 March 2021

Darya Ewaznezhad Fard, Saeideh Gorji Kandi and Marziyeh Khatibzadeh

The purpose of this study is to investigate the changes in the performance of ink formulations caused by the addition of compounds that improve the ink’s physical properties to…

Abstract

Purpose

The purpose of this study is to investigate the changes in the performance of ink formulations caused by the addition of compounds that improve the ink’s physical properties to achieve an optimum formulation for inkjet printing, because of the importance and simplicity of this method.

Design/methodology/approach

Ink samples were formulated using Acid Red 14 as ink colorant, different percentages of polymeric compounds including polyvinyl alcohol (PVA), polyvinylpyrrolidone and Carboxy methyl cellulose (CMC) as viscosity modifier compounds and surfactant as the surface tension enhancer. Formulated samples were adjusted in terms of fluid physical properties e.g. viscosity, density and surface tension, and the effect of used compounds on the improvement of both physical and colorimetric properties such as viscosity, surface tension, colorimetric coordinates and lightfastness has been evaluated to achieve the optimum printing inks to be printed on three different substrates.

Findings

The experimental observations showed that CMC was the most compatible compound as the viscosity modifier as its viscosity value was in the printable range of 2–22 cP. Moreover, a flow-curve test was applied to the ink samples and their Newtonian behavior was approved. Based on the spectrophotometric test results of printed samples, the samples containing PVA provided acceptable lightfastness in comparison to other ink samples on every used substrate.

Originality/value

An optimum relation between colorimetric coordinates of the printed samples and ink formulation could be considered and achieved.

Details

Pigment & Resin Technology, vol. 51 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 November 2010

K. Chakvattanatham, S. Phattanarudee and S. Kiatkamjornwong

The purpose of this paper is to prepare anionically surface‐modified organic pigment/binder ink jet inks for printing on chitosan‐pre‐treated silk fabrics.

Abstract

Purpose

The purpose of this paper is to prepare anionically surface‐modified organic pigment/binder ink jet inks for printing on chitosan‐pre‐treated silk fabrics.

Design/methodology/approach

Anionically surface‐modified organic pigment/binder ink jet inks were prepared in four colours (cyan, magenta, yellow and black). The pigment‐to‐binder ratio was controlled at 1:6.4 for the cyan, magenta and yellow inks, and 1:3.4 for the black ink. Ink formulations (by weight) were assembled and mixed as follows: 8 per cent pigment dispersion, 10 per cent diethylene glycol, 12 per cent glycerol, 5 per cent urea, 10 per cent polyacrylate emulsion binder and 55 per cent deionised water. They were characterised in terms of their particle size, zeta‐potential, particle morphology, viscosity, surface tension and pH. The inks were printed onto silk or the chitosan pre‐treated silk fabrics using a piezo‐type ink jet printer. The fabrics were then heat cured and analysed for the effect of chitosan pre‐treatment on colour gamut, wash fastness and crock fastness.

Findings

The formulated ink jet inks yielded an acceptably good ink jetting reliability, one‐year stability and printability. The chitosan pre‐treated silk fabrics gave a wider colour gamut and colour saturation than the non‐treated one. Crock fastness and wash fastness of the chitosan pre‐treated fabrics were relatively better than those of non‐treated fabrics.

Research limitations/implications

The surface‐modified pigments are transparent and thus their inks printed on the chitosan pre‐treated fabrics produced slightly low K/S values of cyan, magenta, yellow, and black colours because the limited chitosan concentration in the pre‐treatment is controlled by its solubility in acidic solution. The higher loading of chitosan pre‐treatment gave higher K/S values and a stiffer touch of the fabrics.

Practical implications

The water‐based pigmented inks having the sulphonate group on the pigment surface can be printed on the fabric surface pre‐treated with chitosan molecules which have the protonated amino groups to give good colour appearance. It is anticipated that this type of ink can be applied to any textile surface which has been pre‐treated with the protonated chitosan.

Originality/value

The modified organic pigments having the sulphonate group on their surface can be used to produce novel water‐based ink jet inks which can print on the chitosan pre‐treated silk fabric. Ionic interactions between the sulphonate group of the pigment and protonated amino groups of chitosan in conjunction with polyacrylate binder enhance colour strength, widen colour gamut and chroma, and produce good adhesion for fabric operational properties such as wash fastness and crock fastness.

Details

Pigment & Resin Technology, vol. 39 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 503