Search results

1 – 10 of over 1000
Article
Publication date: 25 May 2010

H. Abd El‐Wahab, M.M. El‐Molla and L. Lin

The purpose of this paper is to prepare and characterise various ink formulations for inkjet printing on nylon 66 carpet.

Abstract

Purpose

The purpose of this paper is to prepare and characterise various ink formulations for inkjet printing on nylon 66 carpet.

Design/methodology/approach

Various ink formulations were prepared using CI Acid Red 57, synthetic thickeners (BYK425 and BYK420), ethylene glycol, diethylene glycol, isopropanol with auxiliaries. The inks were characterised for their rheological, wetting and storage stability properties. The inks were jetted using a Printos P16 drop‐on‐demand jet print‐head onto nylon 66 carpet materials. The printed images were characterised using an ImageXpert system.

Findings

It is found that the inks containing the synthetic thickeners at the optimum ratio give good printing and image properties, such as optical density, drop size, and depth of penetration into the substrate at pH 4‐5. The optimised ink formulation is found to have good storage stability.

Research limitations/implications

The study focuses on ink formulations based on CI Acid Red 57. Ink formulations based on other colorants could also be studied in order to assess the applicability of the ink formulation system found for other colorants.

Practical implications

The ink formulations developed could find use in industrial scale printing.

Originality/value

Low cost ink formulations for printing of nylon carpets are novel.

Details

Pigment & Resin Technology, vol. 39 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 20 October 2021

Osama A. Hakeim, Samah A. Rashed and Hanan Diab

The present research aims to manage the formulations of pigment-based inks containing aminopropyl/vinyl/silsesquioxane (APSV) as a pigment binding agent for inkjet printing of…

Abstract

Purpose

The present research aims to manage the formulations of pigment-based inks containing aminopropyl/vinyl/silsesquioxane (APSV) as a pigment binding agent for inkjet printing of polyester as a commercial trial for the printing of polyester as a single-step process.

Design/methodology/approach

The proposed formulations incorporated APSV by using the mini-emulsion technique at a low relieving temperature under the thermal initiation or UV radiation of vinyl-terminated groups in APSV. In this study, the storage stability of inks with regard to physical properties was broadly examined. Moreover, the color performance, including colorimetric data, color fixation and fastness properties of printed fabrics was evaluated.

Findings

The results indicated that the inks containing APSV were formulated and were stable in terms of particle size, dispersion stability, surface tension and viscosity over a period of one month and for four freeze/thaw cycles. APSV successfully fixed the pigment-based inkjet inks on polyester fabric and could achieve a significantly higher color performance and degree of fixation than the formulated inks without APSV.

Research limitations/implications

It could also fulfill all the physical properties of ink prerequisites over storing and eliminating all challenges in improving the performance and utilization of inkjet printing.

Practical implications

APSV can also be used as a pigment binding agent to formulate inks for inkjet printing of polyester fabrics as the authors’ past examination for inkjet printing of polyester fabrics post-treated with APSV.

Social implications

This study eliminates the noteworthy challenges in formulating the pigment-based inks for textile applications by incorporation of a binder while keeping up the necessary viscosity profile for a specific print head.

Originality/value

This study addressed all the issues arising from the complex nature and very challenging requirements of inkjet inks.

Details

Pigment & Resin Technology, vol. 51 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 December 2020

H. Abd El-Wahab, A.M. Nasser, H.M. Abd ElBary, M. Abd Elrahman and M. Hassanein

This paper aims to study the effect of the new modified dispersing agent, milling time of the properties and particle size distribution (PSD) of inkjet ink formulation for…

Abstract

Purpose

This paper aims to study the effect of the new modified dispersing agent, milling time of the properties and particle size distribution (PSD) of inkjet ink formulation for polyester fabric printing.

Design/methodology/approach

The study’s methods include preparation of different formulations of textile inkjet inks based on different types of dispersing agents, then applying and evaluating the prepared formulations on the polyester fabric. The properties of the prepared ink formulations were analyzed by measuring viscosity, surface tension and particle size. The current work is including the study of the effect of using different doses of different dispersing agents and the milling time on their characteristics. Also, the study was extended to evaluate the printed polyester by using the prepared inks according to light fastness, washing fastness, alkali perspiration fastness and crock fastness.

Findings

The results showed that the used dispersing agents and the different milling time enhanced the viscosity and dynamic surface tension in the accepted range, but it was largely cleared in the PSD which tends to perform the inks on the printhead and prevent clogging of nozzles. Light fastness, washing fastness, alkali perspiration fastness and crock fastness gave good results in agreement with this type of inkjet inks for textile printing.

Research limitations/implications

In this work, good results were obtained with this type of dispersing agent for inkjet ink formulations, but for other dispersing agents, other tests could be performed. The inkjet ink could also be formulated with other additives to prevent clogging of nozzles on the printhead.

Practical implications

These ink formulations could be used for printing on polyester fabric by the inkjet printing.

Originality/value

Recently, there was a considerable interest in the study of the effect of PSD on the inkjet inks to prevent clogging of nozzles on the printhead and to improve the print quality on the textile fiber.

Details

Pigment & Resin Technology, vol. 50 no. 4
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 October 2004

Andrew Hancock and Long Lin

UV curing technology has a number of unique advantages over the conventional curing technologies. However, until very recently, there had been few successful examples of the…

2022

Abstract

UV curing technology has a number of unique advantages over the conventional curing technologies. However, until very recently, there had been few successful examples of the application of UV curing technology in ink‐jet printing. Several reasons, including the requirement of low viscosity for ink‐jet printing inks, were responsible for the lack of development of UV curable ink‐jet printing inks. This paper describes, in some details, the challenges that a formulator had to face in developing UV curable ink‐jet printing inks, together with information on the status quo of UV curable ink‐jet printing technology.

Details

Pigment & Resin Technology, vol. 33 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 13 May 2020

H. Abd El-Wahab, G.A. Meligi, M.G. Hassaan and L. Lin

The purpose of this study is to prepare, characterise and evaluate nano-emulsions of ter-polymers of various compositions as eco-friendly binders for flexographic ink industry.

Abstract

Purpose

The purpose of this study is to prepare, characterise and evaluate nano-emulsions of ter-polymers of various compositions as eco-friendly binders for flexographic ink industry.

Design/methodology/approach

Various nano-emulsions of ter-polymers were prepared based on Vinyl acetate, Vinyl Versatate, butyl acrylate, acrylic acid and acrylamide monomers by means of a conventional seeded emulsion polymerisation technique, using K2S2O8 as the initiator. The characterisation of the prepared emulsions was performed using Fourier transform infrared, thermo-gravimetric analysis, gel permeation chromatography and transmission electron microscopy. A selection of co-polymers and ter-polymers were formulated with pigments and additional ingredients, as water-based flexographic inks. The inks were characterised for their rheological properties, pH, degree of dispersion, water-resistance and colour density.

Findings

It was found that the low viscosity of the prepared polymers may reduce the film thickness of the flexographic inks and may also increase the spreading of the ink on the surface. As a result, stable modified poly acrylate-based latex with improved physico-mechanical properties was obtained. The prepared latexes showed improved properties such as enhanced thermal stability and better water resistance. The effect of the emulsifier type on the properties of the resulting emulsion latexes and their corresponding films were investigated. Also, as the hydrophobic monomer increases, so does the colour density and increasing the binder ratio enhances the gloss values. The improving in gloss values were obtained and provide excellent adhesion properties for both the pigment particles and the base paper.

Research limitations/implications

The study focusses on the preparation of new water-based ter-polymer nano-particles and their use as eco-friendly binders for flexographic ink industry. Ink formulations based on other different type emulsion polymers could also be studied to assess the applicability of the ink formulation system found for other binders.

Practical implications

The ink formulations developed could find use in industrial-scale printing.

Originality/value

Eco-friendly environment and low-cost ink formulations for printing on paper substrates are novel.

Details

Pigment & Resin Technology, vol. 49 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 May 1991

Hoda Z. Shams, Mahmoud Y. Ahmed and Magdy F. Abbas

A new series of printing inks that satisfy non‐absorbent substrates, namely, metals and metal foils has been formulated. The suggested ink formulations are well adapted for the…

Abstract

A new series of printing inks that satisfy non‐absorbent substrates, namely, metals and metal foils has been formulated. The suggested ink formulations are well adapted for the Lithographic and Flexographic Printing Processes. The inks are subjected to different testings and controllings to fulfill the requirements of printers in the graphic trade.

Details

Pigment & Resin Technology, vol. 20 no. 5
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 24 January 2020

H. Abd El-Wahab, G. El-Meligi, M.G. Hassaan, A. Kazlauciunas and Long Lin

The purpose of this paper is to prepare, characterise and evaluate nano-emulsions of copolymers of various compositions as eco-friendly binders for flexographic ink industry.

Abstract

Purpose

The purpose of this paper is to prepare, characterise and evaluate nano-emulsions of copolymers of various compositions as eco-friendly binders for flexographic ink industry.

Design/methodology/approach

Various nano-emulsions of copolymers were prepared using styrene (St), butyl acrylate (BuAc), acrylic acid (AA) and acrylamide (AAm) monomers by means of a conventional seeded emulsion polymerisation technique, using K2S2O8 as the initiator. The characterisation of the prepared emulsions was performed using Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), gel permeation chromatography (GPC) and transmission electron microscopy (TEM). A selection of copolymers was formulated with pigments and additional ingredients, as water-based flexographic inks. The inks were characterised for their viscosity, pH, degree of dispersion, water resistance and colour density.

Findings

It was found that the low viscosity of the prepared copolymers may reduce the film thickness of the flexographic inks and may also increase the spreading of the ink on the surface. As a result, stable modified polyacrylate-based latex with improved physico-mechanical properties were obtained. The prepared latexes were showed improving and enhancing in water resistance; gloss values, and the print density that ranged from 2.06 to 2.51 and the maximum gloss values (39 and 48) were also obtained. Also, these binders provide excellent adhesion properties for both the pigment particles and the base paper.

Practical implications

This study focuses on the preparation of new water-based copolymer nanoparticles and their use as eco-friendly binders for flexographic ink industry.

Social implications

The ink formulations developed could find use in industrial-scale printing.

Originality/value

Eco-friendly environment ink formulations for printing on paper substrates are novel.

Details

Pigment & Resin Technology, vol. 49 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 23 May 2008

Jose Maria Lopez Pedrosa and Mark Bradley

The purpose of this paper is to develop a high‐throughput approach to optimize printing of pigment‐based formulations.

1340

Abstract

Purpose

The purpose of this paper is to develop a high‐throughput approach to optimize printing of pigment‐based formulations.

Design/methodology/approach

A total of 40 formulations were robotically prepared by varying the concentrations of diethyleneglycol, glycerol and surfynol. In addition, a variety of inkjet printer (process) variables (voltage, pulse width and frequency) was varied. The combined influence of these two sets of variables on printing performance were determined, analysed and optimised using the Statistical Software Package (MODDE 8), which uses multiple linear regression and partial least square analysis.

Findings

The components diethyleneglycol and surfynol were observed to predominantly control viscosity and surface tension of all formulations, which voltage and pulse width were found to be the main factors controlling the spread of the droplet on the substrate.

Practical implications

Optimisation of pigment‐based formulations has typically involved the one‐by‐one systematic variation of components in a stepwise manner. The work reported here allowed the generation of a robust model allowing the properties of any new formulation to be accurately predicted. Importantly, the experimental tools and methods developed can be applied quite generally to the preparation of any new formulation for inkjet printing application.

Originality/value

Experimental design and high‐throughput technology allow new formulations to be accurately predicted for diverse inkjet applications.

Details

Pigment & Resin Technology, vol. 37 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 20 April 2022

Walaa M. Abd El-Gawad and Wael Mohamed Abdelmaksoud

This study aims to investigate the possibility of synthesizing cobalt doped willemite ceramic blue pigment by using Egyptian white sand as environmental and economical raw…

Abstract

Purpose

This study aims to investigate the possibility of synthesizing cobalt doped willemite ceramic blue pigment by using Egyptian white sand as environmental and economical raw material for multi-applications in coatings and inks.

Design/methodology/approach

After the synthesis process, the prepared blue pigment was characterized via X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray analysis technique. Then the blue pigment was integrated into both coating and ink formulations. The effect of the prepared multifunctional coatings on corrosion resistance and thermal stability was evaluated using different standard tests. Also, the effect of inclusion of blue pigment in flexographic printing ink formulation was done.

Findings

The results showed that the coating containing the cobalt doped willemite blue pigment offered good anticorrosive performance and high thermal stability. Additionally, the presented results revealed that integration of the blue pigment in flexographic printing ink formulation enhanced fineness, gloss, viscosity and color more than the commercial one “FX 430–201.”

Originality/value

In conclusion, relied on the eco-friendly principle which can be regarded as an economic and green strategy, it can be obtained that this new pigment can provide good multifunctions such as corrosion resistance and thermal stability in coatings and good fineness, gloss, viscosity and color in inks which can enable them to be widely applied in different industries.

Details

Pigment & Resin Technology, vol. 52 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 15 February 2021

Amruta Joglekar-Athavale and Ganapti S. Shankarling

The review glances upon the colorants used for printing on ceramic substrates by ink jet technology and techniques, chemistry involved during the selection of the colorants.

Abstract

Purpose

The review glances upon the colorants used for printing on ceramic substrates by ink jet technology and techniques, chemistry involved during the selection of the colorants.

Design/methodology/approach

The ink jet technology is an easy and a convenient technique, specially designed colorants are used for such applications with tailor made properties and features.

Findings

New developments in technology and chemistry of colorants to achieve successes in application studies of ceramic substrates.

Research limitations/implications

N/A.

Practical implications

This review glances upon the history, development and practical approach of the current techniques with available dyes and pigments and the techniques involved during the synthesis and application.

Originality/value

The review paper provides information about the development of the inkjet technique on ceramics and available colorants with methods.

Details

Pigment & Resin Technology, vol. 51 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of over 1000