Search results

1 – 10 of 243
Article
Publication date: 11 January 2021

Victor Rizov

This paper is concerned with analysis of the time-dependent strain energy release rate for a longitudinal crack in a beam subjected to linear relaxation. A viscoelastic model with…

Abstract

Purpose

This paper is concerned with analysis of the time-dependent strain energy release rate for a longitudinal crack in a beam subjected to linear relaxation. A viscoelastic model with an arbitrary number of parallel units is used for treating the relaxation. Each unit has one dashpot and two springs. A stress-strain-time relationship is derived for the case when the coefficient of viscosity in each unit of the viscoelastic model changes continuously with time. The beam exhibits continuous material inhomogeneity along the thickness. Thus, the moduli of elasticity and the coefficients of viscosity vary continuously in the thickness direction. The aim of the present paper is to obtain time-dependent solutions to the strain energy release rate that take into account the relaxation when the coefficient of viscosity changes with time.

Design/methodology/approach

Time-dependent solutions to the strain energy release rate are derived by considering the time-dependent strain energy and also by using the compliance method. The two solutions produce identical results.

Findings

The variation of the strain energy release rate with time due to the relaxation is analysed. The influence of material inhomogeneity and the crack location along the beam width on the strain energy release rate are evaluated. The effects of change of the coefficients of viscosity with time and the number of units in the viscoelastic model on the strain energy release rate are assessed by applying the solutions derived.

Originality/value

The time-dependent strain energy release rate for a longitudinal vertical crack in a beam under relaxation is analysed for the case when the coefficients of viscosity change with time.

Details

World Journal of Engineering, vol. 18 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 April 2023

Mustafa Taşkin and Özgür Demir

The purpose of this paper is to parametrically investigate the vibration and damping characteristics of a functionally graded (FG) inhomogeneous and porous curved sandwich beam

Abstract

Purpose

The purpose of this paper is to parametrically investigate the vibration and damping characteristics of a functionally graded (FG) inhomogeneous and porous curved sandwich beam with a frequency-dependent viscoelastic core.

Design/methodology/approach

The FG material properties in this study are assumed to vary through the beam thickness by power law distribution. Additionally, FG layers have porosities, which are analyzed individually in terms of even and uneven distributions. First, the equations of motion for the free vibration of the FG curved sandwich beam were derived by Hamilton's principle. Then, the generalized differential quadrature method (GDQM) was used to solve the resulting equations in the frequency domain. Validation of the proposed FG curved beam model and the reliability of the GDQ solution was provided via comparison with the results that already exist in the literature.

Findings

A series of studies are carried out to understand the effects on the natural frequencies and modal loss factors of system parameters, i.e. beam thickness, porosity distribution, power law exponent and curvature on the vibration characteristics of an FG curved sandwich beam with a ten-parameter fractional derivative viscoelastic core material model.

Originality/value

This paper focuses on the vibration and damping characteristics of FG inhomogeneous and porous curved sandwich beam with frequency dependent viscoelastic core by GDQM – for the first time, to the best of the authors' knowledge. Moreover, it serves as a reference for future studies, especially as it shows that the effect of porosity distribution on the modal loss factor needs further investigation. GDQM can be useful in dynamic analysis of sandwich structures used in aerospace, automobile, marine and civil engineering applications.

Details

Engineering Computations, vol. 40 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 31 July 2023

Lei Li and Siqi An

This paper aims to investigate analytical solutions of natural frequencies and mode shapes of Euler-Bernoulli beams with step changes in the stiffness.

Abstract

Purpose

This paper aims to investigate analytical solutions of natural frequencies and mode shapes of Euler-Bernoulli beams with step changes in the stiffness.

Design/methodology/approach

In this work, analytical solutions for a beam with a single discontinuity was performed. Subsequently, based on an effective matrix formulation, the closed-form expressions of the single discontinuity beam could be conveniently extended to stepped beams with multiple stiffness discontinuities.

Findings

The results of the study show that the natural frequency of the beam can be adjusted by the local stiffness variation, and step location plays a significant role in free vibration responses.

Originality/value

The effects of the stiffness of the segment and step location on the natural frequencies of the stepped beams under different boundary conditions were examined using the proposed analytical scheme. This study provides insights into the design of variable-stiffness beam structures with the capability to adjust natural frequencies.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 14 August 2019

Ahmed Bekhadda, Ismail Bensaid, Abdelmadjid Cheikh and Bachir Kerboua

The purpose of this paper is to study the static buckling and free vibration of continuously graded ceramic-metal beams by employing a refined higher-order shear deformation…

Abstract

Purpose

The purpose of this paper is to study the static buckling and free vibration of continuously graded ceramic-metal beams by employing a refined higher-order shear deformation, which is also the primary goal of this paper.

Design/methodology/approach

The proposed model is able to catch both the microstructural and shear deformation impacts without employing any shear correction factors, due to the realistic distribution of transverse shear stresses. The material properties are supposed to vary across the thickness direction in a graded form and are estimated by a power-law model. The equations of motion and related boundary conditions are extracted using Hamilton’s principle and then resolved by analytical solutions for calculating the critical buckling loads and natural frequencies.

Findings

The obtained results are checked and compared with those of other theories that exist in the literature. At last, a parametric study is provided to exhibit the influence of different parameters such as the power-law index, beam geometrical parameters, modulus ratio and axial load on the dynamic and buckling characteristics of FG beams.

Originality/value

Searching in the literature and to the best of the authors’ knowledge, there are limited works that consider the coupled effect between the vibration and the axial load of FG beams based on new four-variable refined beam theory. In comparison with a beam model, the number of unknown variables resulting is only four in the general cases, as against five in the case of other shear deformation theories. The actual model represents a real distribution of transverse shear effects besides a parabolic arrangement of the transverse shear strains over the thickness of the beam, so it is needless to use of any shear correction factors.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 16 May 2023

Yongliang Wang

This study aimed to solve the engineering problem of free vibration disturbance and local mesh refinement induced by microcrack damage in circularly curved beams. The accurate…

Abstract

Purpose

This study aimed to solve the engineering problem of free vibration disturbance and local mesh refinement induced by microcrack damage in circularly curved beams. The accurate identification of the crack damage depth, number and location depends on high-precision frequency and vibration mode solutions; therefore, it is critical to obtain these reliable solutions. The high-precision finite element method for the free vibration of cracked beams needs to be developed to grasp and control error information in the conventional solutions and the non-uniform mesh generation near the cracks. Moreover, the influence of multi-crack damage on the natural frequency and vibration mode of a circularly curved beam needs to be detected.

Design/methodology/approach

A scheme for cross-sectional damage defects in a circularly curved beam was established to simulate the depth, location and the number of multiple cracks by implementing cross-section reduction induced by microcrack damage. In addition, the h-version finite element mesh adaptive analysis method of the Timoshenko beam was developed. The superconvergent solution of the vibration mode of the cracked curved beam was obtained using the superconvergent patch recovery displacement method to determine the finite element solution. The superconvergent solution of the frequency was obtained by computing the Rayleigh quotient. The superconvergent solution of the eigenfunction was used to estimate the error of the finite element solution in the energy norm. The mesh was then subdivided to generate an improved mesh based on the error. Accordingly, the final optimised meshes and high-precision solution of natural frequency and mode shape satisfying the preset error tolerance can be obtained. Lastly, the disturbance behaviour of multi-crack damage on the vibration mode of a circularly curved beam was also studied.

Findings

Numerical results of the free vibration and damage disturbance of cracked curved beams with cracks were obtained. The influences of crack damage depth, crack damage number and crack damage distribution on the natural frequency and mode of vibration of a circularly curved beam were quantitatively analysed. Numerical examples indicate that the vibration mode and frequency of the beam would be disturbed in the region close to the crack damage, and a greater crack depth translates to a larger frequency change. For multi-crack beams, the number and distribution of cracks also affect the vibration mode and natural frequency. The adaptive method can use a relatively dense mesh near the crack to adapt to the change in the vibration mode near the crack, thus verifying the efficacy, accuracy and reliability of the method.

Originality/value

The proposed combination of methodologies provides an extremely robust approach for free vibration of beams with cracks. The non-uniform mesh refinement in the adaptive method can adapt to changes in the vibration mode caused by crack damage. Moreover, the proposed method can adaptively divide a relatively fine mesh at the crack, which is applied to investigating free vibration under various curved beam angles and crack damage distribution conditions. The proposed method can be extended to crack damage detection of 2D plate and shell structures and three-dimensional structures with cracks.

Details

Engineering Computations, vol. 40 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 November 2016

João Paulo Pascon

The purpose of this paper is to deal with large deformation analysis of plane beams composed of functionally graded (FG) elastic material with a variable Poisson’s ratio.

Abstract

Purpose

The purpose of this paper is to deal with large deformation analysis of plane beams composed of functionally graded (FG) elastic material with a variable Poisson’s ratio.

Design/methodology/approach

The material is assumed to be linear elastic, with a Poisson’s ratio varying according to a power law along the thickness direction. The finite element used is a plane beam of any-order of approximation along the axis, and with four transverse enrichment schemes, which can describe constant, linear, quadratic and cubic variation of the strain along the thickness direction. Regarding the constitutive law, five materials are adopted: two homogeneous limiting cases, and three intermediate FG cases. The effect of both finite element kinematics and distribution of Poisson’s ratio on the mechanical response of a cantilever is investigated.

Findings

In accordance with the scientific literature, the second scheme, in which the transverse strain is linearly variable, is sufficient for homogeneous long (or thin) beams under bending. However, for FG short (or moderate thick) beams, the third scheme, in which the transverse strain variation is quadratic, is needed for a reliable strain or stress distribution.

Originality/value

In the scientific literature, there are several studies regarding nonlinear analysis of functionally graded materials (FGMs) via finite elements, analysis of FGMs with constant Poisson’s ratio, and geometrically linear problems with gradually variable Poisson’s ratio. However, very few deal with finite element analysis of flexible beams with gradually variable Poisson’s ratio. In the present study, a reliable formulation for such beams is presented.

Article
Publication date: 2 September 2019

Ahmed E. Abouelregal and Ashraf M. Zenkour

The purpose of this paper is to investigate the response of viscoelastic beam resting on a Winkler’s foundation and subjected to an axial initial stress, thermal load and an…

Abstract

Purpose

The purpose of this paper is to investigate the response of viscoelastic beam resting on a Winkler’s foundation and subjected to an axial initial stress, thermal load and an ultra-fast laser heating.

Design/methodology/approach

In this introduced model, the authors considered the interaction design between the vertical springs only. The beam is considered as an Euler–Bernoulli beam exposed to sinusoidal varying heat.

Findings

The deflection and the temperature response of the beam are obtained using Laplace transform and its numerical inversion method. In the numerical example, the effect of the laser pulse duration and viscous damping coefficient on the transverse displacement response of the beam is discussed. The thermoelastic interactions of the beam due to the axial load are also illustrated.

Originality/value

Physical views of this paper may be useful for the design and vibration analysis of micro-resonators and micro-sensors applications. In addition, the utilization of laser-ultrasonic technology has found wide applications in lab environments, and in an expanding number of cases, it is extending to the industrial field and realm application.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 5 September 2018

Ramzi Lajili, Olivier Bareille, Mohamed Lamjed Bouazizi, Mohamed Ichchou and Noureddine Bouhaddi

This paper aims to propose numerical-based and experiment-based identification processes, accounting for uncertainties to identify structural parameters, in a wave propagation…

Abstract

Purpose

This paper aims to propose numerical-based and experiment-based identification processes, accounting for uncertainties to identify structural parameters, in a wave propagation framework.

Design/methodology/approach

A variant of the inhomogeneous wave correlation (IWC) method is proposed. It consists on identifying the propagation parameters, such as the wavenumber and the wave attenuation, from the frequency response functions. The latters can be computed numerically or experimentally. The identification process is thus called numerical-based or experiment-based, respectively. The proposed variant of the IWC method is then combined with the Latin hypercube sampling method for uncertainty propagation. Stochastic processes are consequently proposed allowing more realistic identification.

Findings

The proposed variant of the IWC method permits to identify accurately the propagation parameters of isotropic and composite beams, whatever the type of the identification process in which it is included: numerical-based or experiment-based. Its efficiency is proved with respect to an analytical model and the Mc Daniel method, considered as reference. The application of the stochastic identification processes shows good agreement between simulation and experiment-based results and that all identified parameters are affected by uncertainties, except damping.

Originality/value

The proposed variant of the IWC method is an accurate alternative for structural identification on wide frequency ranges. Numerical-based identification process can reduce experiments’ cost without significant loss of accuracy. Statistical investigations of the randomness of identified parameters illustrate the robustness of identification against uncertainties.

Article
Publication date: 11 November 2013

Giuseppe Castaldi, Vincenzo Galdi, Andrea Alù and Nader Engheta

The work is aimed at studying the electromagnetic interaction between a homogeneous, isotropic single-negative (SNG) slab and an inhomogeneous, anisotropic double-positive (DPS…

Abstract

Purpose

The work is aimed at studying the electromagnetic interaction between a homogeneous, isotropic single-negative (SNG) slab and an inhomogeneous, anisotropic double-positive (DPS) slab.

Design/methodology/approach

The approach is based on the transformation optics framework, which allows systematic design and modelling of anisotropic, inhomogeneous metamaterials with inherent field-manipulation capabilities.

Findings

The paper finds that a transformation-optics-based DPS slab can compensate the inherent opaqueness to the electromagnetic radiation of a SNG slab. Here, “compensation” means that the resulting bi-layer may give rise to zero-reflection for a normally-incident plane wave at a given frequency. Such phenomenon is inherently accompanied by (de)funneling effects for collimated-beam illumination, and it turns out to be quite robust to material losses as well as geometrical and constitutive-parameter truncation.

Originality/value

The results provide further evidence and insight in how SNG-like responses may be emulated (within narrow parametric ranges) by suitably-engineered spatial inhomogeneity and anisotropy in DPS media. Moreover, they also show that resonant transmission phenomena through SNG materials may be engineered via the powerful framework of transformation optics.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 32 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 19 July 2021

Himani Naesstroem, Frank Brueckner and Alexander F.H. Kaplan

This paper aims to gain an understanding of the behaviour of iron ore when melted by a laser beam in a continuous manner. This fundamental knowledge is essential to further…

Abstract

Purpose

This paper aims to gain an understanding of the behaviour of iron ore when melted by a laser beam in a continuous manner. This fundamental knowledge is essential to further develop additive manufacturing routes such as production of low cost parts and in-situ reduction of the ore during processing.

Design/methodology/approach

Blown powder directed energy deposition was used as the processing method. The process was observed through high-speed imaging, and computed tomography was used to analyse the specimens.

Findings

The experimental trials give preliminary results showing potential for the processability of iron ore for additive manufacturing. A large and stable melt pool is formed in spite of the inhomogeneous material used. Single and multilayer tracks could be deposited. Although smooth and even on the surface, the single layer tracks displayed porosity. In case of multilayered tracks, delamination from the substrate material and deformation can be seen. High-speed videos of the process reveal various process phenomena such as melting of ore powder during feeding, cloud formation, melt pool size, melt flow and spatter formation.

Originality/value

Very little literature is available that studies the possible use of ore in additive manufacturing. Although the process studied here is not industrially useable as is, it is a step towards processing cheap unprocessed material with a laser beam.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 243