Search results

1 – 6 of 6
Article
Publication date: 15 April 2024

Rilwan Kayode Apalowo, Mohamad Aizat Abas, Fakhrozi Che Ani, Muhamed Abdul Fatah Muhamed Mukhtar and Mohamad Riduwan Ramli

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal…

Abstract

Purpose

This study aims to investigate the thermal fracture mechanism of moisture-preconditioned SAC305 ball grid array (BGA) solder joints subjected to multiple reflow and thermal cycling.

Design/methodology/approach

The BGA package samples are subjected to JEDEC Level 1 accelerated moisture treatment (85 °C/85%RH/168 h) with five times reflow at 270 °C. This is followed by multiple thermal cycling from 0 °C to 100 °C for 40 min per cycle, per IPC-7351B standards. For fracture investigation, the cross-sections of the samples are examined and analysed using the dye-and-pry technique and backscattered scanning electron microscopy. The packages' microstructures are characterized using an energy-dispersive X-ray spectroscopy approach. Also, the package assembly is investigated using the Darveaux numerical simulation method.

Findings

The study found that critical strain density is exhibited at the component pad/solder interface of the solder joint located at the most distant point from the axes of symmetry of the package assembly. The fracture mechanism is a crack fracture formed at the solder's exterior edges and grows across the joint's transverse section. It was established that Au content in the formed intermetallic compound greatly impacts fracture growth in the solder joint interface, with a composition above 5 Wt.% Au regarded as an unsafe level for reliability. The elongation of the crack is aided by the brittle nature of the Au-Sn interface through which the crack propagates. It is inferred that refining the solder matrix elemental compound can strengthen and improve the reliability of solder joints.

Practical implications

Inspection lead time and additional manufacturing expenses spent on investigating reliability issues in BGA solder joints can be reduced using the study's findings on understanding the solder joint fracture mechanism.

Originality/value

Limited studies exist on the thermal fracture mechanism of moisture-preconditioned BGA solder joints exposed to both multiple reflow and thermal cycling. This study applied both numerical and experimental techniques to examine the reliability issue.

Details

Soldering & Surface Mount Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 16 April 2024

Shuyuan Xu, Jun Wang, Xiangyu Wang, Wenchi Shou and Tuan Ngo

This paper covers the development of a novel defect model for concrete highway bridges. The proposed defect model is intended to facilitate the identification of bridge’s…

Abstract

Purpose

This paper covers the development of a novel defect model for concrete highway bridges. The proposed defect model is intended to facilitate the identification of bridge’s condition information (i.e. defects), improve the efficiency and accuracy of bridge inspections by supporting practitioners and even machines with digitalised expert knowledge, and ultimately automate the process.

Design/methodology/approach

The research design consists of three major phases so as to (1) categorise common defect with regard to physical entities (i.e. bridge element), (2) establish internal relationships among those defects and (3) relate defects to their properties and potential causes. A mixed-method research approach, which includes a comprehensive literature review, focus groups and case studies, was employed to develop and validate the proposed defect model.

Findings

The data collected through the literature and focus groups were analysed and knowledge were extracted to form the novel defect model. The defect model was then validated and further calibrated through case study. Inspection reports of nearly 300 bridges in China were collected and analysed. The study uncovered the relationships between defects and a variety of inspection-related elements and represented in the form of an accessible, digitalised and user-friendly knowledge model.

Originality/value

The contribution of this paper is the development of a defect model that can assist inexperienced practitioners and even machines in the near future to conduct inspection tasks. For one, the proposed defect model can standardise the data collection process of bridge inspection, including the identification of defects and documentation of their vital properties, paving the path for the automation in subsequent stages (e.g. condition evaluation). For another, by retrieving rich experience and expert knowledge which have long been reserved and inherited in the industrial sector, the inspection efficiency and accuracy can be considerably improved.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 12 April 2024

Lara E. Yousif, Mayyadah S. Abed, Aseel B. Al-Zubidi and Kadhim K. Resan

The number of people with special needs, including citizens and military personnel, has increased as a result of terrorist attacks and challenging conditions in Iraq and other…

Abstract

Purpose

The number of people with special needs, including citizens and military personnel, has increased as a result of terrorist attacks and challenging conditions in Iraq and other countries. With almost 80% of the world’s amputees having below-the-knee amputations, Iraq has become a global leader in the population of amputees. Important components found in lower limb prostheses include the socket, pylon (shank), prosthetic foot and connections.

Design/methodology/approach

There are two types of prosthetic feet: articulated and nonarticulated. The solid ankle cushion heel foot is the nonarticulated foot that is most frequently used. The goal of this study is to use a composite filament to create a revolutionary prosthetic foot that will last longer, have better dorsiflexion and be more stable and comfortable for the user. The current study, in addition to pure polylactic acid (PLA) filament, 3D prints test items using a variety of composite filaments, such as PLA/wood, PLA/carbon fiber and PLA/marble, to accomplish this goal. The experimental step entails mechanical testing of the samples, which includes tensile testing and hardness evaluation, and material characterization by scanning electron microscopy-energy dispersive spectrometer analysis. The study also presents a novel design for the nonarticulated foot that was produced with SOLIDWORKS and put through ANSYS analysis. Three types of feet are produced using PLA, PLA/marble and carbon-covered PLA/marble materials. Furthermore, the manufactured prosthetic foot undergoes testing for dorsiflexion and fatigue.

Findings

The findings reveal that the newly designed prosthetic foot using carbon fiber-covered PLA/marble material surpasses the PLA and PLA/marble foot in terms of performance, cost-effectiveness and weight.

Originality/value

To the best of the author’s knowledge, this is the first study to use composite filaments not previously used, such as PLA/wood, PLA/carbon fiber and PLA/marble, to design and produce a new prosthetic foot with a longer lifespan, improved dorsiflexion, greater stability and enhanced comfort for the patient. Beside the experimental work, a numerical technique specifically the finite element method, is used to assess the mechanical behavior of the newly designed foot structure.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 April 2024

Celia Rufo-Martín, Ramiro Mantecón, Geroge Youssef, Henar Miguelez and Jose Díaz-Álvarez

Polymethyl methacrylate (PMMA) is a remarkable biocompatible material for bone cement and regeneration. It is also considered 3D printable but requires in-depth…

Abstract

Purpose

Polymethyl methacrylate (PMMA) is a remarkable biocompatible material for bone cement and regeneration. It is also considered 3D printable but requires in-depth process–structure–properties studies. This study aims to elucidate the mechanistic effects of processing parameters and sterilization on PMMA-based implants.

Design/methodology/approach

The approach comprised manufacturing samples with different raster angle orientations to capitalize on the influence of the filament alignment with the loading direction. One sample set was sterilized using an autoclave, while another was kept as a reference. The samples underwent a comprehensive characterization regimen of mechanical tension, compression and flexural testing. Thermal and microscale mechanical properties were also analyzed to explore the extent of the appreciated modifications as a function of processing conditions.

Findings

Thermal and microscale mechanical properties remained almost unaltered, whereas the mesoscale mechanical behavior varied from the as-printed to the after-autoclaving specimens. Although the mechanical behavior reported a pronounced dependence on the printing orientation, sterilization had minimal effects on the properties of 3D printed PMMA structures. Nonetheless, notable changes in appearance were attributed, and heat reversed as a response to thermally driven conformational rearrangements of the molecules.

Originality/value

This research further deepens the viability of 3D printed PMMA for biomedical applications, contributing to the overall comprehension of the polymer and the thermal processes associated with its implementation in biomedical applications, including personalized implants.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

31

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 April 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf D'Souza and Thirumaleshwara Bhat

This study explores how titanium oxide (TiO2) filler influences the specific wear rate (SWR) in flax fiber-reinforced epoxy composites (FFRCs) through a Taguchi approach. It aims…

Abstract

Purpose

This study explores how titanium oxide (TiO2) filler influences the specific wear rate (SWR) in flax fiber-reinforced epoxy composites (FFRCs) through a Taguchi approach. It aims to boost abrasive wear resistance by incorporating TiO2 filler, promoting sustainable and eco-friendly materials.

Design/methodology/approach

This study fabricates epoxy/flax composites with TiO2 particles (0–8 wt%) using hand layup. Composites were tested for wear following American Society for Testing and Materials (ASTM) G99-05. Statistical analysis used Taguchi design of experiments (DOE), with ANOVA identifying key factors affecting SWR in abrasive sliding conditions.

Findings

The study illuminates how integrating TiO2 filler particles into epoxy/flax composites enhances abrasive wear properties. Statistical analysis of SWR highlights abrasive grit size (grit) as the most influential factor, followed by normal load, wt% of TiO2 and sliding distance. Grit size has the highest effect at 43.78%, and wt% TiO2 filler contributes 15.61% to SWR according to ANOVA. Notably, the Taguchi predictive model closely aligns with experimental results, validating its reliability.

Originality/value

This paper integrates TiO2 filler and flax fibers to form a novel hybrid composite with enhanced tribological properties in epoxy composites. The use of Taguchi DOE and ANOVA offers valuable insights for optimizing control variables, particularly in natural fiber-reinforced composites (NFRCs).

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 6 of 6