Search results

1 – 10 of 273
Open Access
Article
Publication date: 1 August 2023

Jacob Guerrero and Susanne Engström

By adopting the “hard” and “soft” project management (PM) approaches from the PM-literature, this paper aims to problematize the expected role of client organizations in driving…

Abstract

Purpose

By adopting the “hard” and “soft” project management (PM) approaches from the PM-literature, this paper aims to problematize the expected role of client organizations in driving innovation in the transport infrastructure sector.

Design/methodology/approach

Addressing a large public client in Sweden, a case study design was initially applied to provide in-depth insights and perspectives of client project managers’ views and experiences of managing projects expected to drive innovation. In this paper, the concepts of “hard” and “soft” are used to discuss empirical findings on challenges associated with adopting a PM-approach for driving innovation in projects. The empirical material consists of interview data, complemented with observations and archival data.

Findings

Findings reveal challenges associated with combining hard and soft approaches, frequently demonstrating difficulties in balancing short-term project expectations with the promotion of innovation. In line with the literature, project managers note that there is a need for soft approaches to promote development and drive innovation. Yet, findings reflect a situation in which operational success criteria predominate, whereas soft approaches are not sufficiently used to create the grounds required for fostering innovation.

Originality/value

Insights are provided into how PM-approaches may impact construction innovation in the infrastructure sector, demonstrating a need for further research on the challenges and implications of applying and combining hard and soft PM-approaches.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 2 April 2024

Paulo Alberto Sampaio Santos, Breno Cortez and Michele Tereza Marques Carvalho

Present study aimed to integrate Geographic Information Systems (GIS) and Building Information Modeling (BIM) in conjunction with multicriteria decision-making (MCDM) to enhance…

Abstract

Purpose

Present study aimed to integrate Geographic Information Systems (GIS) and Building Information Modeling (BIM) in conjunction with multicriteria decision-making (MCDM) to enhance infrastructure investment planning.

Design/methodology/approach

This analysis combines GIS databases with BIM simulations for a novel highway project. Around 150 potential alternatives were simulated, narrowed to 25 more effective routes and 3 options underwent in-depth analysis using PROMETHEE method for decision-making, based on environmental, cost and safety criteria, allowing for comprehensive cross-perspective comparisons.

Findings

A comprehensive framework proposed was validated through a case study. Demonstrating its adaptability with customizable parameters. It aids decision-making, cost estimation, environmental impact analysis and outcome prediction. Considering these critical factors, this study holds the potential to advance new techniques for assessment and planning railways, power lines, gas and water.

Research limitations/implications

The study acknowledges limitations in GIS data quality, particularly in underdeveloped areas or regions with limited technology access. It also overlooks other pertinent variables, like social, economic, political and cultural issues. Thus, conclusions from these simulations may not entirely represent reality or diverse potential scenarios.

Practical implications

The proposed method automates decision-making, reducing subjectivity, aids in selecting effective alternatives and considers environmental criteria to mitigate negative impacts. Additionally, it minimizes costs and risks while demonstrating adaptability for assessing diverse infrastructures.

Originality/value

By integrating GIS and BIM data to support a MCDM workflow, this study proposes to fill the existing research gap in decision-making prioritization and mitigate subjective biases.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 14 February 2024

Tiep Nguyen, Nicholas Chileshe, Duc Ty Ho, Viet Thanh Nguyen and Quang Phu Tran

Urban rail projects are typically large-scale transport infrastructure projects (megaprojects) which have many potential risks that can influence the strategic goals of owners…

Abstract

Purpose

Urban rail projects are typically large-scale transport infrastructure projects (megaprojects) which have many potential risks that can influence the strategic goals of owners. However, there is a paucity of studies which explore the impact of risks on both “urban rail” project time and cost together considering quantitative assessments. Therefore, this paper focuses on investigating critical risks and quantifying such risk impacts on urban railway project schedule and cost in practice.

Design/methodology/approach

A combination of qualitative and quantitative research methods comprising semi-interviews with five experts and a questionnaire survey of 132 professional respondents is used. The data were modeled using Monte Carlo Simulation to predict the probability of project schedule and cost.

Findings

The results show that 30 risk variables are categorized into seven main groups which have significant impacts on both project time and cost. Outstanding five risk variables were highlighted as follows: (1) project site clearance and land compensation; (2) design changes; (3) physical project resources; (4) contractors’ competencies and (5) project finance. Such findings were supported by Monte Carlo simulation which predicted in the worst case that the project may suffer 11.03 months’ delays and have cost overrun with a contingency of US$287.68 million.

Originality/value

This study expands our knowledge about time and cost contingency of urban metro railway implementation across developing economies and particularly within the context of Vietnam. Policymakers will not only gain an understanding about risk structure but will also recognize the significant impacts of critical risk through risk impact modeling and simulation. Such an approach provides insights into risk treatment priorities for planners so that they can proactively establish suitable strategies for risk mitigation in practice.

Details

Built Environment Project and Asset Management, vol. 14 no. 2
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 27 June 2023

Nirodha Fernando, Kasun Dilshan T.A. and Hexin (Johnson) Zhang

The Government’s investment in infrastructure projects is considerably high, especially in bridge construction projects. Government authorities must establish an initial…

Abstract

Purpose

The Government’s investment in infrastructure projects is considerably high, especially in bridge construction projects. Government authorities must establish an initial forecasted budget to have transparency in transactions. Early cost estimating is challenging for Quantity Surveyors due to incomplete project details at the initial stage and the unavailability of standard cost estimating techniques for bridge projects. To mitigate the difficulties in the traditional preliminary cost estimating methods, there is a requirement to develop a new initial cost estimating model which is accurate, user friendly and straightforward. The research was carried out in Sri Lanka, and this paper aims to develop the artificial neural network (ANN) model for an early cost estimate of concrete bridge systems.

Design/methodology/approach

The construction cost data of 30 concrete bridge projects which are in Sri Lanka constructed within the past ten years were trained and tested to develop an ANN cost model. Backpropagation technique was used to identify the number of hidden layers, iteration and momentum for optimum neural network architectures.

Findings

An ANN cost model was developed, furnishing the best result since it succeeded with around 90% validation accuracy. It created a cost estimation model for the public sector as an accurate, heuristic, flexible and efficient technique.

Originality/value

The research contributes to the current body of knowledge by providing the most accurate early-stage cost estimate for the concrete bridge systems in Sri Lanka. In addition, the research findings would be helpful for stakeholders and policymakers to propose policy recommendations that positively influence the prediction of the most accurate cost estimate for concrete bridge construction projects in Sri Lanka and other developing countries.

Details

Journal of Financial Management of Property and Construction , vol. 29 no. 1
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 27 January 2022

Guus Keusters, Hans Bakker and Erik-Jan Houwing

Civil engineering projects around the world have been underperforming for a long time. While the complexity of these projects will continue to increase, there is an urgent need to…

Abstract

Purpose

Civil engineering projects around the world have been underperforming for a long time. While the complexity of these projects will continue to increase, there is an urgent need to perform better. Although the integrated design process is critical for project success, the literature lacks studies describing the link to project performance. Therefore, this study aims to investigate the dominant variables that affect the integrated design process and consequently project performance.

Design/methodology/approach

A multiple case study was conducted to determine the dominant variables that affect the integrated design process and project performance. The research included four projects. Semi-structured interviews were the main source of data.

Findings

The cases indicated that the extent to which an integrated approach is achieved in the design process is essential for project performance. This applies to the integration of stakeholders’ interests as well as the integration of disciplines. Above all, it was concluded that the project team participants’ competencies for integration are a dominant factor for project performance, as the integrated design process has changed from a technical challenge to an integrative one.

Originality/value

This study provides insights into the dominant variable of the integrated design process that affects project performance, which is underexposed in the literature. The study results reveal the importance of competencies related to integration and adoption of the design problem context, which are not yet included in civil engineering design methods. In this respect, empathy is introduced as a new and critical competence for the civil engineering industry, which needs further research.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 29 December 2023

Dara Sruthilaya, Aneetha Vilventhan and P.R.C. Gopal

The purpose of this paper is to identify and analyze the interdependence of project complexity factors (PCFs) in metro rail projects using the Decision-Making Trial and Evaluation…

Abstract

Purpose

The purpose of this paper is to identify and analyze the interdependence of project complexity factors (PCFs) in metro rail projects using the Decision-Making Trial and Evaluation Laboratory (DEMATEL). The study provides qualitative and quantitative analysis of project complexities factors and their relationships. The results of the study facilitate effective project planning, proactive risk management and informed decision-making by stakeholders.

Design/methodology/approach

This study employs a case-based method for identifying PCFs and a DEMATEL method for analyzing the interdependence of complexity factors in metro rail projects. Initially, PCFs were identified through an extensive literature review. To validate and refine these factors, semi-structured interviews were conducted with thirty experienced professionals, each having 5–20 years of experience in roles such as project management, engineering, and planning. Further, elevated and underground metro rail projects were purposefully selected as cases, for identifying the similarities and differences in PCFs. A questionnaire survey was conducted with various technical experts in metro rail projects. These experts rated the impact of PCFs on a five-point Likert scale, for the evaluation of the interdependence of PCFs. The DEMATEL technique was used to analyze the interdependencies of the PCFs.

Findings

Metro rail projects are influenced by project complexity, which significantly impacts their performance. The analysis reveals that “design problems with existing structures,” “change in design or construction” and “land acquisition” are the key factors contributing to project complexity.

Originality/value

The study of project complexity in metro rail projects is limited because most of the studies have studies on examining complexity in mega projects. The existing literature lacks adequate attention in identifying project complexity and its effects on metro rail project performance. This research aims to bridge this gap by examining project complexity and interdependencies in metro rail projects.

Details

Built Environment Project and Asset Management, vol. 14 no. 2
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 28 March 2022

Muhammad Ayat, Azmat Ullah and Changwook Kang

The primary purpose of this study is to explore the relationship between the unsolicited proposal (USP) and the performance of private participation infrastructure (PPI) projects…

Abstract

Purpose

The primary purpose of this study is to explore the relationship between the unsolicited proposal (USP) and the performance of private participation infrastructure (PPI) projects in developing countries.

Design/methodology/approach

The main data set for this study was collected from the World Bank database consisting of 8,951 PPI projects that occurred in developing countries from 1996 to 2020. Hierarchical logistic regression was applied for investigating the effects of USPs on project success. Three moderators, namely, control of corruption, presence of local sponsor and project size were also included in the model to test the impact of their interactions with the USP on the performance of PPI projects. Further, to assess the impact of the effect of USPs, the average marginal effect was calculated. The framework used in this study consists of 18 control variables, three moderators and one noncontrolled independent variable (the USP).

Findings

The results of hierarchical logistic regression indicate that USPs have a significant and negative effect on the success of PPI projects occurring in developing countries. The negative effect of a USP weakens with the presence of local sponsors and stronger control of corruption in the host country. However, contrary to the authors’ expectations, the results show that project size does not significantly affect the association between USPs and the success of PPI projects. Moreover, the results of average marginal effects show that the negative impact of USP on the success of PPI projects ranges between 2.4% and 3.8%.

Originality/value

This study quantifies the negative impact of USP on the success of PPI projects in developing countries, which will be helpful for the practitioners to understand the associated risk with USP projects. Furthermore, it also identifies the moderating roles of control of corruption and the presence of local sponsors on the relationship between USP and the success of PPI projects.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 25 March 2024

Francis Nuako, Frank Ato Ghansah and Thomas Adusei

It is widely accepted that one criterion for determining if a construction project is successful is whether it is completed within the expected budget. There have been…

Abstract

Purpose

It is widely accepted that one criterion for determining if a construction project is successful is whether it is completed within the expected budget. There have been advancements in the management of building projects throughout time but cost overruns remain a key concern in the construction sector internationally, particularly in emerging economies such as Ghana. This study aims to answer the question, “What are the critical success factors (CSFs) that can assist reduce cost overruns in public sector infrastructure projects in the Ghanaian construction industry?”

Design/methodology/approach

This study used a quantitative survey method. The questionnaire was pre-tested by interviewing 15 contractors to ascertain the validity of the content. Factor analysis and multiple regression were adopted to analyze the data.

Findings

This study discovered that the critical factors that can reduce cost overruns in construction projects in Ghana are directly linked to five themes: early contractor involvement in the project planning stage, adequate funding, good project team relations, competent managers/supervisors and project participant incentives/bonuses. This study identifies indestructible, empirically measurable important success criteria for reducing cost overruns in public building projects in Ghana.

Practical implications

When well thought through from the project initiation stage to completion, these critical successes can also be used to deal with damaging economic effects such as allocative inefficiency of scarce resources, further delays, contractual disputes, claims and litigation, project failure and total abandonment.

Originality/value

The uniqueness of this research resides in the fact that it is, to the best of the authors’ knowledge, a first-of-its-kind investigation of the CSFs for reducing cost overruns in public building projects in developing countries.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 28 March 2024

Chinthaka Niroshan Atapattu, Niluka Domingo and Monty Sutrisna

The current estimation practice in construction projects greatly needs upgrading, as there has been no improvement in the cost overrun issue over the past 70 years. The purpose of…

Abstract

Purpose

The current estimation practice in construction projects greatly needs upgrading, as there has been no improvement in the cost overrun issue over the past 70 years. The purpose of this research was to develop a new multiple regression analysis (MRA)-based model to forecast the final cost of road projects at the pre-design stage using data from 43 projects in New Zealand (NZ).

Design/methodology/approach

The research used the case study of 43 completed road projects in NZ. Document analysis was conducted to collect data, and statistical tests were used for model development and analysis.

Findings

Eight models were developed, and all models achieved the required F statistics and met the regression assumptions. The models’ mean absolute percentage error (MAPE) was between 21.25% and 22.77%. The model with the lowest MAPE comprised the road length and width, number of bridges, pavement area, cut and fill area, preliminary cost and cost indices change.

Research limitations/implications

The model is based on road projects in NZ. However, it was designed to be able to adapt to other contexts. The findings suggest that the model can be used to improve traditional conceptual estimating methods. Past project data is often stored by the project team but rarely used for analysing and forecasting purposes. This research emphasises that past data can be effectively used to predict the project cost at the pre-design stage with limited information.

Originality/value

No research was conducted to adopt cost modelling techniques into the conceptual estimation practice in the NZ construction industry.

Details

Journal of Financial Management of Property and Construction , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 7 December 2022

Peyman Jafary, Davood Shojaei, Abbas Rajabifard and Tuan Ngo

Building information modeling (BIM) is a striking development in the architecture, engineering and construction (AEC) industry, which provides in-depth information on different…

Abstract

Purpose

Building information modeling (BIM) is a striking development in the architecture, engineering and construction (AEC) industry, which provides in-depth information on different stages of the building lifecycle. Real estate valuation, as a fully interconnected field with the AEC industry, can benefit from 3D technical achievements in BIM technologies. Some studies have attempted to use BIM for real estate valuation procedures. However, there is still a limited understanding of appropriate mechanisms to utilize BIM for valuation purposes and the consequent impact that BIM can have on decreasing the existing uncertainties in the valuation methods. Therefore, the paper aims to analyze the literature on BIM for real estate valuation practices.

Design/methodology/approach

This paper presents a systematic review to analyze existing utilizations of BIM for real estate valuation practices, discovers the challenges, limitations and gaps of the current applications and presents potential domains for future investigations. Research was conducted on the Web of Science, Scopus and Google Scholar databases to find relevant references that could contribute to the study. A total of 52 publications including journal papers, conference papers and proceedings, book chapters and PhD and master's theses were identified and thoroughly reviewed. There was no limitation on the starting date of research, but the end date was May 2022.

Findings

Four domains of application have been identified: (1) developing machine learning-based valuation models using the variables that could directly be captured through BIM and industry foundation classes (IFC) data instances of building objects and their attributes; (2) evaluating the capacity of 3D factors extractable from BIM and 3D GIS in increasing the accuracy of existing valuation models; (3) employing BIM for accurate estimation of components of cost approach-based valuation practices; and (4) extraction of useful visual features for real estate valuation from BIM representations instead of 2D images through deep learning and computer vision.

Originality/value

This paper contributes to research efforts on utilization of 3D modeling in real estate valuation practices. In this regard, this paper presents a broad overview of the current applications of BIM for valuation procedures and provides potential ways forward for future investigations.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 273