Search results

1 – 10 of over 1000
Article
Publication date: 14 November 2016

Yuye Wang, Guofeng Zhang and Xiaoguang Hu

Infrared simulation plays an important role in small and affordable unmanned aerial vehicles. Its key and main goal is to get the infrared image of a specific target. Infrared

Abstract

Purpose

Infrared simulation plays an important role in small and affordable unmanned aerial vehicles. Its key and main goal is to get the infrared image of a specific target. Infrared physical model is established through a theoretical research, thus the temperature field is available. Then infrared image of a specific target can be simulated properly while taking atmosphere state and effect of infrared imaging system into account. For recent years, some research has been done in this field. Among them, the infrared simulation for large scale is still a key problem to be solved. In this passage, a method of classification based on texture blending is proposed and this method effectively solves the problem of classification of large number of images and increase the frame rate of large infrared scene rendering. The paper aims to discuss these issues.

Design/methodology/approach

Mosart Atmospheric Tool (MAT) is used first to calculate data of sun radiance, skyshine radiance, path radiance, temperatures of different material which is an offline process. Then, shader in OGRE does final calculation to get simulation result and keeps a high frame rate. Considering this, the authors convert data in MAT file into textures which can be easily handled by shader. In shader responding, radiance can be indexed by information of material, vertex normal, eye and sun. Adding the effect of infrared imaging system, the final radiance distribution is obtained. At last, the authors get infrared scene by converting radiance to grayscale.

Findings

In the fragment shader, fake infrared textures are used to look up temperature which can calculate radiance of itself and related radiance.

Research limitations/implications

The radiance is transferred into grayscale image while considering effect of infrared imaging system.

Originality/value

Simulation results show that a high frame rate can be reached while guaranteeing the fidelity.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 9 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 9 August 2021

Zongyao Yang, Yong Shan and Jingzhou Zhang

This study aims to investigate the effects of exhaust direction on exhaust plume and helicopter infrared radiation in hover and cruise status.

Abstract

Purpose

This study aims to investigate the effects of exhaust direction on exhaust plume and helicopter infrared radiation in hover and cruise status.

Design/methodology/approach

Four exhaust modes are concerned, and the external flow field and fuselage temperature field are calculated by numerical simulation. The infrared radiation intensity distributions of the four models in hovering and cruising states are computed by the ray-tracing method.

Findings

Under the hover status, the exhaust plume is deflected to flow downward after it exhausts from the nozzle exit, upon the impact of the main-rotor downwash. Besides, the exhaust plume shows a “swirling” movement following the main-rotor rotational direction. The forward-flight flow helps prevent the hot exhaust plume from a collision with the helicopter fuselage generally for the cruise status. In general, the oblique-upward exhaust mode provides moderate infrared radiation intensities in all of the viewing directions, either under the hover or the cruise status. Compared with the hover status, the infrared radiation intensity distribution alters somewhat in cruise.

Originality/value

Illustrating the influences of exhaust direction on plume flow and helicopter infrared radiation and the differences of helicopter infrared radiation under hover and cruise statuses are identified. Finally, an appropriate exhaust mode is proposed to provide a better IR signature distribution.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 August 2020

Mingqi Gu, Wei Zhang, Shang Hao, Xiaochen Liu, Zichao Zhang and Fenjuan Shao

This study aims to explore the infrared imaging effect of fabrics coated with phase change material microcapsules (PCM-MCs), which are prepared by the initiation of ultraviolet…

Abstract

Purpose

This study aims to explore the infrared imaging effect of fabrics coated with phase change material microcapsules (PCM-MCs), which are prepared by the initiation of ultraviolet (UV) light.

Design/methodology/approach

PCM-MCs were prepared by UV polymerization using paraffin (PA) as core material, polymethyl methacrylate as wall material and ferric chloride as photoinitiator. The effects of emulsifier dosage and emulsification temperature on the properties of PA emulsion were investigated. Scanning electron microscopy, particle size analysis, infrared spectroscopy, differential scanning calorimetry and infrared imaging test were used to characterize the properties of microcapsules.

Findings

The PCM-MCs with good morphology and particle size were prepared with 25 cm of the distance between light source and the liquid. The average particle size was 1.066 µm and the latent heat of phase transition was 19.96 J/g. After 100 accelerated thermal cycles, the latent heat only decreased by 1.8%. It had good heat storage stability and thermal stability. The fabric coated by the microcapsules exhibited a variable temperature hysteresis effect when placed in the sun, and presented a color close to the infrared images of the human palm under the external environment temperature close to the human body temperature.

Research limitations/implications

The PCM-MCs prepared based on UV light initiation showed good thermal properties and its coated fabrics had an infrared decoy effect below the temperature of the human body.

Practical implications

This study explored the application of microcapsules in textiles.

Originality/value

The microcapsules had a certain application potential in infrared decoy effect.

Details

Pigment & Resin Technology, vol. 50 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 June 2004

Chris Blasband, Jim Bleak and Gus Schultz

As real‐time, high‐fidelity visual scene simulation has become ubiquitous in the training, modeling and simulation community, a growing need for more than “out‐the‐window” scene…

Abstract

As real‐time, high‐fidelity visual scene simulation has become ubiquitous in the training, modeling and simulation community, a growing need for more than “out‐the‐window” scene simulation has developed. A strong requirement has developed for the ability to simulate the output of different types of sensors, especially electro‐optical (EO), infrared (IR), night vision goggle (NVG) and radar systems. To satisfy the need for advanced sensor simulation, Evans & Sutherland (E&S) has developed a physics‐based, dynamic, real‐time sensor simulation which allows users to model advanced EO, IR and NVG devices that are fully correlated with the “out‐the‐window” visual view. In this paper, the unique sensor simulation capabilities of E&S will be described. A brief description of the physics employed, input and output are presented along with example images.

Details

Sensor Review, vol. 24 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 3 April 2024

Ashish Bhatt and Shripad P. Mahulikar

Aero-engine exhaust plume length can be more than the aircraft length, making it easier to detect and track by infrared seeker. Aim of this study is to analyze the effect of free…

Abstract

Purpose

Aero-engine exhaust plume length can be more than the aircraft length, making it easier to detect and track by infrared seeker. Aim of this study is to analyze the effect of free stream Mach number (M) on length of potential core of plume. Also, change in infrared (IR) signature of plume and aircraft surface with variation in elevation angle (θ) is examined.

Design/methodology/approach

Convergent divergent (CD) nozzle is located outside the rear fuselage of the aircraft. A two dimensional axisymmetric computational fluid dynamics (CFD) study was carried out to study effect of M on potential core. The CFD data with aircraft and plume was then used for IR signature analysis. The sensor position is changed with respect to aircraft from directly bottom towards frontal section of aircraft. The IR signature is studied in mid wave IR (MWIR) and long wave IR (LWIR) band.

Findings

The potential plume core length and width increases as M increases. At higher altitudes, the potential core length increases for a fixed M. The plume emits radiation in the MWIR band, whereas the aerodynamically heated aircraft surface emits IR in the LWIR band. The IR signature in the MWIR band continuously decreases as the sensor position changes from directly bottom towards frontal. In the LWIR band the IR signature initially decreases as the sensor moves from the directly bottom to the frontal, as the sensor begins to see the wing leading edges and nose cone, the IR signature in the LWIR band slightly increases.

Originality/value

The novelty of this study comes from the data reported on the effect of free stream Mach number on the potential plume core and variation of the overall IR signature of aircraft with change in elevation angle from directly below towards frontal section of aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 October 2010

Florencia Edith Wiria, Kah Fai Leong and Chee Kai Chua

Tissue engineering (TE) involves biological, medical and engineering expertise and a current engineering challenge is to provide good TE scaffolds. These highly porous 3D…

1812

Abstract

Purpose

Tissue engineering (TE) involves biological, medical and engineering expertise and a current engineering challenge is to provide good TE scaffolds. These highly porous 3D scaffolds primarily serve as temporal holding devices for cells that facilitate structural and functional tissue unit formation of the newly transplanted cells. One method used successfully to produce scaffolds is that of rapid prototyping. Selective laser sintering (SLS) is one such versatile method that is able to process many types of polymeric materials and good stability of its products. The purpose of this paper is to present modeling of the heat transfer process, to understand the sintering phenomena that are experienced by powder particles in the SLS powder bed during the sintering process. With the understanding of sintering process obtained through the theoretical modeling, experimental process of biomaterials in SLS could be directed towards the appropriate sintering window, so as not to cause unintentional degradation to the biomaterials.

Design/methodology/approach

SLS uses a laser as a heat source to sinter parts. A theoretical study based on heat transfer phenomena during SLS process was carried out. The study identified the significant biomaterial and laser beam properties that were critical to the sintering result. The material properties were thermal conductivity, thermal diffusivity, surface reflectivity and absorption coefficient.

Findings

The influential laser beam properties were laser power and scan speed, which were machine parameters that can be controlled by users. The identification of the important parameters has ensured that favorable sintering conditions can be achieved.

Research limitations/implications

The selection of biopolymer influences the manner in which energy is absorbed by the powder bed during the SLS process. In this paper, the modeling and investigative work was validated by poly(vinyl alcohol) which is a biomaterial that has been used for many biomedical and pharmaceutical purposes.

Practical implications

The paper can be the foundation for extension to other types of biomaterials including biopolymers, bioceramics and biocomposites.

Originality/value

The formulation of the theory for heat transfer phenomena during the SLS process is of significant value to any studies in using SLS for biomedical applications.

Details

Rapid Prototyping Journal, vol. 16 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 November 2000

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied in biomedicine from the theoretical as well as practical points of view. The bibliography at the end…

1347

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied in biomedicine from the theoretical as well as practical points of view. The bibliography at the end of the paper contains 748 references to papers, conference proceedings and theses/dissertations dealing with the finite element analyses and simulations in biomedicine that were published between 1985 and 1999.

Details

Engineering Computations, vol. 17 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 6 February 2017

António José Ramos Silva, P.M.G. Moreira, Mario A.P. Vaz and Joaquim Gabriel

Maintenance is one of the most critical and expensive operations during the life cycle of metallic structures, in particular in the aeronautic industry. However, early detection…

Abstract

Purpose

Maintenance is one of the most critical and expensive operations during the life cycle of metallic structures, in particular in the aeronautic industry. However, early detection of fatigue cracks is one of the most demanding operations in global maintenance procedures. In this context, non-destructive testing using image techniques may represent one of the best solutions in such situations, especially thermal stress analyses (TSA) using infrared thermography. The purpose of this paper is to access and characterize the main stress profile calculated through temperature variation, for different load frequencies.

Design/methodology/approach

In this paper, a cyclic load is applied to an aluminum sample component while infrared thermal image is being acquired. According to the literature and experiments, a cyclic load applied to a material results in cyclic temperature variation.

Findings

Frequency has been shown to be an important parameter in TSA evaluations, increasing the measured stress profile amplitude. The loading stimulation frequency and the maximum stress recorded show a good correlation (R2 higher than 0.995). It was verified that further tests and modeling should be performed to fully comprehend the influence of load frequency and to create a standard to conduct thermal stress tests.

Originality/value

This work revealed that the current infrared technology is capable of reaching far more detailed thermal and spatial resolution than the one used in the development of TSA models. Thus, for the first time the influence of mechanical load frequency in the thermal profiles of TSA is visible and consequentially the measured mechanical stress.

Details

International Journal of Structural Integrity, vol. 8 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 18 January 2016

Sunpreet Singh and Rupinder Singh

This paper aims to review the industrial and biomedical applications of state-of-the-art fused deposition modelling (FDM)-assisted investment casting (FDMAIC). Brief literature…

1300

Abstract

Purpose

This paper aims to review the industrial and biomedical applications of state-of-the-art fused deposition modelling (FDM)-assisted investment casting (FDMAIC). Brief literature survey of methodologies, ideas, techniques and approaches used by various researchers is highlighted and use of hybrid feedstock filament-based pattern to produce metal matrix composite is duly discussed.

Design/methodology/approach

Pattern replica required for investment casting (IC) of biomedical implant, machine parts, dentistry and other industrial components can be directly produced by using FDM process is presented. Relevant studies and examples explaining the suitability of FDMAIC for various applications are also presented.

Findings

Researches to optimize the conventional IC with FDM solutions and develop new hybrid feedstock filament of FDM done by researchers worldwide are also discussed. The review highlights the benefit of FDMAIC to surgeons, engineers and manufacturing organizations.

Research limitations/implications

The research related to this survey is limited to the suitability and applicability of FDMAIC.

Originality/value

This review presents the information regarding potential IC application, which facilitates the society, engineers and manufacturing organizations by providing variety of components for assisting FDM. The information reported in this paper will serve doctors, researchers, organizations and academicians to explore the new options in the field of FDMAIC.

Details

Rapid Prototyping Journal, vol. 22 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 April 2017

Cristina Pusceddu, George Blumberg, Graziano Salvalai and Marco Imperadori

This paper aims to report on a study to investigate the feasibility of thermal reflective multi-layer system (TRMS) as support for disaster resilience.

Abstract

Purpose

This paper aims to report on a study to investigate the feasibility of thermal reflective multi-layer system (TRMS) as support for disaster resilience.

Design/methodology/approach

It is an innovative insulation system, developed from space engineering studies, is lightweight and is characterised by a thermal conductivity of 0.038 W/mK, making it a strong candidate for inexpensive shelter after disaster design.

Findings

One of the results of this study is a proposal for the air shelter house, a new concept design of a shelter based on TRMS.

Originality/value

The combined use of TRMS with the low cost of building materials and a 3D printer system for the construction joints provides a good compromise between building cost and energy efficiency performance. Such an innovative design supports disaster resilience during response, reconstruction and mitigation phases, and it is suitable for a wide variety of cultural and environmental situations where energy efficiency is important.

Details

International Journal of Disaster Resilience in the Built Environment, vol. 8 no. 02
Type: Research Article
ISSN: 1759-5908

Keywords

1 – 10 of over 1000