Search results

11 – 20 of 400
Article
Publication date: 27 January 2022

Marjan Sadeghi, Jonathan Weston Elliott and Mohammed Hashem Mehany

Successful implementation of a building information modeling (BIM) for building operation and maintenance (O&M) requires purposeful, early-design identification of…

Abstract

Purpose

Successful implementation of a building information modeling (BIM) for building operation and maintenance (O&M) requires purposeful, early-design identification of end-user-specific model exchange requirements. This paper aims to provide a semantic data-rich classification system for model objects to convey facilities management (FM) requirements in BIM guidelines in support of efficient FM-BIM data workflows.

Design/methodology/approach

A modularized, repeatable and technical solution for semantic requirements of BIM exchange objects was developed through ontology-based data mapping of the industry foundation classes. The proposed solution further contextualizes syntax per the buildingSMART Data Dictionary schema and provides an implementation agreement to address the quality issues of discipline BIMs and establish consistent modeling and naming conventions to facilitate automated BIM data workflow.

Findings

The level of semantics (LOS) development framework and the results of LOS implementation focusing on a building mechanical system case project are presented and discussed to showcase the increased efficiency resulting from its implementation throughout the BIM data management workflows.

Originality/value

This study represents a pioneering effort to create and implement the LOS schema as a modularized solution in support of automatic BIM data creation, adjustment, verification and transition across the design, construction and O&M workflows of a large owner organization in the Midwest USA.

Article
Publication date: 7 December 2022

Peyman Jafary, Davood Shojaei, Abbas Rajabifard and Tuan Ngo

Building information modeling (BIM) is a striking development in the architecture, engineering and construction (AEC) industry, which provides in-depth information on different…

Abstract

Purpose

Building information modeling (BIM) is a striking development in the architecture, engineering and construction (AEC) industry, which provides in-depth information on different stages of the building lifecycle. Real estate valuation, as a fully interconnected field with the AEC industry, can benefit from 3D technical achievements in BIM technologies. Some studies have attempted to use BIM for real estate valuation procedures. However, there is still a limited understanding of appropriate mechanisms to utilize BIM for valuation purposes and the consequent impact that BIM can have on decreasing the existing uncertainties in the valuation methods. Therefore, the paper aims to analyze the literature on BIM for real estate valuation practices.

Design/methodology/approach

This paper presents a systematic review to analyze existing utilizations of BIM for real estate valuation practices, discovers the challenges, limitations and gaps of the current applications and presents potential domains for future investigations. Research was conducted on the Web of Science, Scopus and Google Scholar databases to find relevant references that could contribute to the study. A total of 52 publications including journal papers, conference papers and proceedings, book chapters and PhD and master's theses were identified and thoroughly reviewed. There was no limitation on the starting date of research, but the end date was May 2022.

Findings

Four domains of application have been identified: (1) developing machine learning-based valuation models using the variables that could directly be captured through BIM and industry foundation classes (IFC) data instances of building objects and their attributes; (2) evaluating the capacity of 3D factors extractable from BIM and 3D GIS in increasing the accuracy of existing valuation models; (3) employing BIM for accurate estimation of components of cost approach-based valuation practices; and (4) extraction of useful visual features for real estate valuation from BIM representations instead of 2D images through deep learning and computer vision.

Originality/value

This paper contributes to research efforts on utilization of 3D modeling in real estate valuation practices. In this regard, this paper presents a broad overview of the current applications of BIM for valuation procedures and provides potential ways forward for future investigations.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 4
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 14 July 2023

Bowen Zheng, Mudasir Hussain, Yang Yang, Albert P.C. Chan and Hung-Lin Chi

In the last decades, various building information modeling–life cycle assessment (BIM-LCA) integration approaches have been developed to assess the environmental impact of the…

Abstract

Purpose

In the last decades, various building information modeling–life cycle assessment (BIM-LCA) integration approaches have been developed to assess the environmental impact of the built asset. However, there is a lack of consensus on the optimal BIM-LCA integration approach that provides the most accurate and efficient assessment outcomes. To compare and determine their accuracy and efficiency, this study aimed to investigate four typical BIM-LCA integration solutions, namely, conventional, parametric modeling, plug-in and industry foundation classes (IFC)-based integration.

Design/methodology/approach

The four integration approaches were developed and applied using the same building project. A quantitative technique for evaluating the accuracy and efficiency of BIM-LCA integration solutions was used. Four indicators for assessing the performance of BIM-LCA integration were (1) validity of LCA results, (2) accuracy of bill-of-quantity (BOQ) extraction, (3) time for developing life cycle inventories (i.e. developing time) and (4) time for calculating LCA results (i.e. calculation time).

Findings

The results show that the plug-in-based approach outperforms others in developing and calculation time, while the conventional one could derive the most accuracy in BOQ extraction and result validity. The parametric modeling approach outperforms the IFC-based method regarding BOQ extraction, developing time and calculation time. Despite this, the IFC-based approach produces LCA outcomes with approximately 1% error, proving its validity.

Originality/value

This paper forms one of the first studies that employ a quantitative and objective method to determine the performance of four typical BIM-LCA integration solutions and reveal the trade-offs between the accuracy and efficiency of the integration approaches. The findings provide practical references for LCA practitioners to select appropriate BIM-LCA integration approaches for evaluating the environmental impact of the built asset during the design phase.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 1 September 2003

A.A. Owolabi, C.J. Anumba and A. El‐Hamalawi

Electronic product catalogues and brochures are gaining popularity, but there is little agreement on content, format, and searching methods. This limits their usability and…

Abstract

Electronic product catalogues and brochures are gaining popularity, but there is little agreement on content, format, and searching methods. This limits their usability and integration with existing construction software tools. This paper examines a product‐modelling approach to delivering building product information and describes a proposed multi‐tier client‐server environment. ISO/STEP and IAI/IFC building product models are considered to facilitate representation, exchange, and sharing of product information. The proposed architecture incorporates scalability with middleware components that would provide single or few points of entry to integrated product information. This paper is part of a research project that builds on the results of related projects including Construct IT Strategy, PROCAT‐GEN, Active Catalog, COMBINE, and ARROW, towards implementing the required software components.

Article
Publication date: 13 February 2019

Esa Halmetoja

This paper aims to describe how building information model (BIM) and big data can be combined in the same interface for providing new value to stakeholders, such as the property…

1180

Abstract

Purpose

This paper aims to describe how building information model (BIM) and big data can be combined in the same interface for providing new value to stakeholders, such as the property owner and user, as well as property service and workplace service companies. The research presents a new concept, which shows how the BIM can be exploited efficiently during maintenance.

Design/methodology/approach

Initially, existing facility management (FM) processes were investigated to find out how to digitize them and identify bottlenecks. Second, BIM’s data content was explored to identify the information that could be used to streamline FM processes. Third, the potential of the active data measured in the building was evaluated. Finally, research was undertaken to find out how constantly fluctuating information can be combined with BIM objects and what kind of added value that combination could offer. The literature review was used to support the primary contribution. In addition, the research problems were described and the basics of the research were obtained by interviews. The author has interviewed 27 professionals from several stakeholders.

Findings

The first finding is that the BIM can serve as a platform for building use, various services and management when it has been adequately generated during the planning and construction phases and enriched before being commissioned. The other essential finding is the theory of conditions data model (CDM), which is a technical environment that combines active data with BIM. The most important advantages of BIM in FM are as follows: • Building owner attains better user satisfaction, acquires better quality and smarter services, saves energy, ensures better indoor conditions and improves building profitability. • Service providers can develop and offer new services, speed up operations, save resources and generate more profits. • The occupant gets a better user experience, faster and higher quality services and better indoor conditions.

Research limitations/implications

The CDM enables to generate for the real estate and construction (RE&C) sector a novel BIM-based ecosystem with standard rules, instead of every individual operator developing his/her own unique solution for BIM use in FM. This will have an impact on the entire RE&C sector’s operating methods and will have significant financial implications in the near future. Application of this research is limited to office buildings where indoor condition measuring is undertaken continuously and where the knowledge of the use cases of spaces is available. In addition, the proper BIM in the Industry Foundation Classes format must exist. The evaluation of the validity of big data is not discussed in this article. Visualization of data and content of user interfaces will be the topic of another article by the author. This article does not deal with intricate technical details, but crucial issues are defined.

Originality/value

The article presents a unique method for BIM use in FM. The theory of CDM (how to combine active data with BIM) is completely new and a similar solution has not been presented earlier. The theory of the presented method will be the crucial key for BIM use and will lead worldwide commissioning. Currently, the theory is under test in the practical pilot project. The results of the project will be published in the next article.

Article
Publication date: 27 September 2021

Alex Bradley, Haijiang Li, Honglei Qin, Wen Xi, Daniel Peel and Nicholas Nisbet

Defining building information modelling (BIM) standards for the infrastructure domain is a central issue to the successful implementation of BIM in civil engineering domains. To…

Abstract

Purpose

Defining building information modelling (BIM) standards for the infrastructure domain is a central issue to the successful implementation of BIM in civil engineering domains. To this end, this paper aims to present a requirements and process analysis for the ports and waterways domain to address the lack of BIM standards development, using the information delivery manual (IDM) approach and the ethos of openBIM standards.

Design/methodology/approach

This research uses the IDM approach. This involves the definition of use cases, process maps, exchange scenarios and subsequent exchange requirements. All these developments were sourced and validated by a series of international industry consultations.

Findings

The paper identifies 30 domain relevant use cases collated from existing sources and new cases. An overview and detailed ports and waterways process map (defining actors, activities and data exchanges). The process maps highlighted 38 exchange scenarios between various activities. Various exchange requirements were defined and are discussed in the context of the required information exchange model and the extensions required to fulfil the needs of the domain. The analysis provides the core information for the next steps of development for a substantial extension to the Industry Foundation Classes and the supporting data dictionary standards.

Research limitations/implications

Because of the international scope of the research, the outcomes can be applied by any stakeholders in the domain of ports and waterways. Therefore, some variation is expected at a national and organizational level. This research has the potential to accelerate the adoption of openBIM standards within the ports and waterways domain leading to increases in efficiency, collaborative working.

Originality/value

This paper reviews the requirements of an identified gap in the provision of openBIM standards relevant and applicable to the domain of ports and waterways.

Details

Construction Innovation , vol. 22 no. 4
Type: Research Article
ISSN: 1471-4175

Keywords

Book part
Publication date: 13 September 2018

Tim McGinley

The circular economy (CE) requires that ‘used’ materials continue to be in circulation after their initial use has finished. Materials are typically sourced in the building…

Abstract

The circular economy (CE) requires that ‘used’ materials continue to be in circulation after their initial use has finished. Materials are typically sourced in the building industry as new materials in bulk that carry guarantees of safety, quality and delivery. The distributed and diverse origins of used materials mean that they do not normally carry these guarantees. Furthermore, existing potential procurement systems for reused materials such as eBay allow users to present their auctions in a loosely structured form that can make it difficult to manage and procure multiple items to satisfy the quantities, condition and type required by the contractor. Therefore, this chapter proposes an information system to support the agile procurement of used materials at a scale that is appropriate for construction projects to support the CE. It describes the development of a tool called ‘JunkUp’ that would allow multiple auctions of similar items from diverse sellers to be managed as a single item. Based on this system, in future work, it should be possible to use this tool to test strategies to address the risk to safety, quality and delivery of reused materials in construction. This should ultimately lead to the opportunity to increase material reuse (and reduce waste) in the building and construction sector and support an agile CE for the building industry.

Details

Unmaking Waste in Production and Consumption: Towards the Circular Economy
Type: Book
ISBN: 978-1-78714-620-4

Keywords

Article
Publication date: 19 July 2023

Ruochen Zeng, Jonathan J.S. Shi, Chao Wang and Tao Lu

As laser scanning technology becomes readily available and affordable, there is an increasing demand of using point cloud data collected from a laser scanner to create as-built…

Abstract

Purpose

As laser scanning technology becomes readily available and affordable, there is an increasing demand of using point cloud data collected from a laser scanner to create as-built building information modeling (BIM) models for quality assessment, schedule control and energy performance within construction projects. To enhance the as-built modeling efficiency, this study explores an integrated system, called Auto-Scan-To-BIM (ASTB), with an aim to automatically generate a complete Industry Foundation Classes (IFC) model consisted of the 3D building elements for the given building based on its point cloud without requiring additional modeling tools.

Design/methodology/approach

ASTB has been developed with three function modules. Taking the scanned point data as input, Module 1 is built on the basis of the widely used region segmentation methodology and expanded with enhanced plane boundary line detection methods and corner recalibration algorithms. Then, Module 2 is developed with a domain knowledge-based heuristic method to analyze the features of the recognized planes, to associate them with corresponding building elements and to create BIM models. Based on the spatial relationships between these building elements, Module 3 generates a complete IFC model for the entire project compatible with any BIM software.

Findings

A case study validated the ASTB with an application with five common types of building elements (e.g. wall, floor, ceiling, window and door).

Originality/value

First, an integrated system, ASTB, is developed to generate a BIM model from scanned point cloud data without using additional modeling tools. Second, an enhanced plane boundary line detection method and a corner recalibration algorithm are developed in ASTB with high accuracy in obtaining the true surface planes. At last, the research contributes to develop a module, which can automatically convert the identified building elements into an IFC format based on the geometry and spatial relationships of each plan.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 July 2021

Long Chen and Jennifer Whyte

As the engineering design process becomes increasingly complex, multidisciplinary teams need to work together, integrating diverse expertise across a range of disciplinary models…

Abstract

Purpose

As the engineering design process becomes increasingly complex, multidisciplinary teams need to work together, integrating diverse expertise across a range of disciplinary models. Where changes arise, these design teams often find it difficult to handle these design changes due to the complexity and interdependencies inherent in engineering systems. This paper aims to develop an innovative approach to clarifying system interdependencies and predicting the design change propagation at the asset level in complex engineering systems based on the digital-twin-driven design structure matrix (DSM).

Design/methodology/approach

The paper first defines the digital-twin-driven DSM in terms of elements and interdependencies, where the authors have defined three types of interdependency, namely, geospatial, physical and logical, at the asset level. The digital twin model was then used to generate the large-scale DSMs of complex engineering systems. The cluster analysis was further conducted based on the improved Idicula–Gutierrez–Thebeau algorithm (IGTA-Plus) to decompose such DSMs into modules for the convenience and efficiency of predicting design change propagation. Finally, a design change propagation prediction method based on the digital-twin-driven DSM has been developed by integrating the change prediction method (CPM), a load-capacity model and fuzzy linguistics. A section of an infrastructure mega-project in London was selected as a case study to illustrate and validate the developed approach.

Findings

The digital-twin-driven DSM has been formally defined by the spatial algebra and Industry Foundation Classes (IFC) schema. Based on the definitions, an innovative approach has been further developed to (1) automatically generate a digital-twin-driven DSM through the use of IFC files, (2) to decompose these large-scale DSMs into modules through the use of IGTA-Plus and (3) predict the design change propagation by integrating a digital-twin-driven DSM, CPM, a load-capacity model and fuzzy linguistics. From the case study, the results showed that the developed approach can help designers to predict and manage design changes quantitatively and conveniently.

Originality/value

This research contributes to a new perspective of the DSM and digital twin for design change management and can be beneficial to assist designers in making reasonable decisions when changing the designs of complex engineering systems.

Details

Engineering, Construction and Architectural Management, vol. 29 no. 8
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 3 April 2018

Giulia Carbonari, Spyridon Stravoravdis and Christine Gausden

The purpose of the presented research is to investigate which tasks among the ones performed during a buildings’ operational phase are perceived to be more inefficient and to…

1716

Abstract

Purpose

The purpose of the presented research is to investigate which tasks among the ones performed during a buildings’ operational phase are perceived to be more inefficient and to investigate if the information within a building information model (BIM) can help improve task efficiency.

Design/methodology/approach

The Digital Built Britain (BIM Level 3) aims to extend BIM into operation by promoting a life cycle approach for buildings through an integrated digital environment. Nevertheless, the main focus of both BIM Level 2 and Level 3 is mainly on design, construction and hand over; therefore, the current understanding and use of BIM for a buildings’ occupancy phase is still limited. Current literature and research focusing on BIM and building management show only marginal use of the technology, especially in terms of how BIM can be used beside for maintenance.

Findings

The paper presents the results of an online questionnaire survey aimed to ascertain the level of perceived inefficiencies of operational tasks. Through the analysis of Industry Foundation Classes (IFC) data models, the research identifies the data set needed to improve the efficiency of the tasks and presents a structured implementation plan to identify the information that should be prioritized in the model implementation.

Originality/value

The study presents part of a methodology developed by the author aimed to implement a BIM model for existing buildings including information that would support the management of the single facility/portfolio. While other studies have considered BIM and the operational phase, especially in relation to asset maintenance, this study has focused on understanding how the information included in the model can improve task efficiency.

Details

Journal of Corporate Real Estate, vol. 20 no. 1
Type: Research Article
ISSN: 1463-001X

Keywords

11 – 20 of 400