Search results

1 – 10 of over 1000
Open Access
Article
Publication date: 18 December 2023

Orlando Troisi, Anna Visvizi and Mara Grimaldi

Industry 4.0 defines the application of digital technologies on business infrastructure and processes. With the increasing need to take into account the social and environmental…

1171

Abstract

Purpose

Industry 4.0 defines the application of digital technologies on business infrastructure and processes. With the increasing need to take into account the social and environmental impact of technologies, the concept of Society 5.0 has been proposed to restore the centrality of humans in the proper utilization of technology for the exploitation of innovation opportunities. Despite the identification of humans, resilience and sustainability as the key dimensions of Society 5.0, the definition of the key factors that can enable Innovation in the light of 5.0 principles has not been yet assessed.

Design/methodology/approach

An SLR, followed by a content analysis of results and a clustering of the main topics, is performed to (1) identify the key domains and dimensions of the Industry 5.0 paradigm; (2) understand their impact on Innovation 5.0; (3) discuss and reflect on the resulting implications for research, managerial practices and the policy-making process.

Findings

The findings allow the elaboration of a multileveled framework to redefine Innovation through the 5.0 paradigm by advancing the need to integrate ICT and technology (Industry 5.0) with the human-centric, social and knowledge-based dimensions (Society 5.0).

Originality/value

The study detects guidelines for managers, entrepreneurs and policy-makers in the adoption of effective strategies to promote human resources and knowledge management for the attainment of multiple innovation outcomes (from technological to data-driven and societal innovation).

Details

European Journal of Innovation Management, vol. 27 no. 9
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 17 April 2024

Hazwani Shafei, Rahimi A. Rahman, Yong Siang Lee and Che Khairil Izam Che Ibrahim

Amid rapid technological progress, the construction industry is embracing Construction 4.0, redefining work practices through emerging technologies. However, the implications of…

Abstract

Purpose

Amid rapid technological progress, the construction industry is embracing Construction 4.0, redefining work practices through emerging technologies. However, the implications of Construction 4.0 technologies to enhancing well-being are still poorly understood. Particularly, the challenge lies in selecting technologies that critically contribute to well-being enhancement. Therefore, this study aims to evaluate the implications of Construction 4.0 technologies to enhancing well-being.

Design/methodology/approach

A list of Construction 4.0 technologies was identified from a national strategic plan on Construction 4.0, using Malaysia as a case study. Fourteen construction industry experts were selected to evaluate the implications of Construction 4.0 technologies on well-being using fuzzy Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The expert judgment was measured using linguistic variables that were transformed into fuzzy values. Then, the collected data was analyzed using the following analyses: fuzzy TOPSIS, Pareto, normalization, sensitivity, ranking performance and correlation.

Findings

Six Construction 4.0 technologies are critical to enhancing well-being: cloud & real-time collaboration, big data & predictive analytics, Internet of Things, building information modeling, autonomous construction and augmented reality & virtualization. In addition, artificial intelligence and advanced building materials are recommended to be implemented simultaneously as a very strong correlation exists between them.

Originality/value

The novelty of this study lies in a comprehensive understanding of the implications of Construction 4.0 technologies to enhancing well-being. The findings can assist researchers, industry practitioners and policymakers in making well-informed decisions to select Construction 4.0 technologies when targeting the enhancement of the overall well-being of the local construction industry.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 19 May 2022

Lucas B. Nhelekwa, Joshua Z. Mollel and Ismail W.R. Taifa

Industry 4.0 has an inimitable potential to create competitive advantages for the apparel industry by enhancing productivity, production, profitability, efficiency and…

Abstract

Purpose

Industry 4.0 has an inimitable potential to create competitive advantages for the apparel industry by enhancing productivity, production, profitability, efficiency and effectiveness. This study, thus, aims to assess the digitalisation level of the Tanzanian apparel industry through the Industry 4.0 perspectives.

Design/methodology/approach

A mixed-methods-based approach was deployed. This study deployed semi-structured interviews, document review and observation methods for the qualitative approach. For the quantitative approach, closed-ended questionnaires were used to ascertain the digitalisation levels and maturity level of the textiles and apparel (T&A) factories and small and medium-sized textile enterprises in Tanzania. The sample size was 110, with participants engaged through the purposive sampling technique.

Findings

Industry 4.0 frameworks evolved into practices mainly since 2011 in several service and manufacturing industries globally. For Tanzania, the findings indicate that the overall maturity level of the T&A industries is 2.5 out of 5.0, demonstrating a medium level of adoption. Thus, the apparel industries are not operating under the industry 4.0 framework; they are operating within the third industrial revolution – Industry 3.0 – framework. For such industries to operate within the fourth industrial revolution – Industry 4.0 – that is only possible if there is significantly well-developed industrial infrastructure, availability of engineering talent, stable commercial partnerships, demand from the marketplace and transactional relationship with customers.

Research limitations/implications

This study’s limitations include: firstly, Industry 4.0 is an emerging area; this resulted in limited theoretical underpinnings in the Tanzanian perspectives. Secondly, the studied industries may not suffice the need to generalise the findings for the entire country, thus needing another study.

Originality/value

Although Industry 4.0 conceptual frameworks have been on trial in several industries since 2011, this is amongst the first empirical research on Industry 4.0 in the Tanzanian apparel industry that assesses the digitalisation levels.

Details

Research Journal of Textile and Apparel, vol. 28 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Open Access
Article
Publication date: 1 April 2024

Ehsan Ahmad

This paper explores the convergence of Education 4.0 and Industry 4.0 and presents a Twin Peaks model for their seamless integration.

73

Abstract

Purpose

This paper explores the convergence of Education 4.0 and Industry 4.0 and presents a Twin Peaks model for their seamless integration.

Design/methodology/approach

A high-level literature review is conducted to identify and discuss the important challenges and opportunities offered by both Education 4.0 and Industry 4.0. A novel Twin Peaks model is devised for the convergence of these domains and to cope with the challenges effectively.

Findings

The proposed Twin Peak model for the convergence of Education 4.0 and Industry 4.0 suggests that the development of these two domains is interdependent. It emphasizes ethical considerations, inclusivity and understanding the concerns of stakeholders from both education and industry. We have also explained how continuous incremental adaptation within the proposed Twin Peaks model might assist in addressing concerns of one sector with the opportunities of the other.

Originality/value

First, Education 4.0 and Industry 4.0 are reviewed in terms of opportunities and challenges they present. Second, a novel Twin Peaks model for the convergence of Education 4.0 and Industry 4.0 is presented. The proposed discovers that the convergence is adaptive, iterative and must be ethically sound while considering the broader societal implications of the digital transformation. Third, this study also acts as a torch-bearer for the necessity for more research of this kind to guarantee that our educational ecosystem is adaptable and capable of producing the skills required for success in the era of IR4.0.

Details

Journal of Innovative Digital Transformation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2976-9051

Keywords

Article
Publication date: 5 April 2024

Carlos Alberto Carbajal Piña, Nuran Acur and Dilek Cetindamar

This paper explores the orchestration of digital innovation in Industry 4.0 organisations.

Abstract

Purpose

This paper explores the orchestration of digital innovation in Industry 4.0 organisations.

Design/methodology/approach

The study applies the activity theory to explorative multiple case studies. Observations of innovation activities in five business cases take place at two large international organisations.

Findings

The results underline five logics of action that drive digital innovation: (1) digital transformation, (2) technology translation, (3) catalyst agents, (4) digital thread and (5) empowerment. Further, the case study organisations highlight the importance of developing a sustainable culture capable of continuously adopting new technologies, processes and infrastructure that will allow the management of digital innovations.

Originality/value

The study empirically shows the motivations and challenges in orchestrating digital innovation in Industry 4.0 organisations.

Details

Journal of Manufacturing Technology Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 28 March 2024

Elisa Gonzalez Santacruz, David Romero, Julieta Noguez and Thorsten Wuest

This research paper aims to analyze the scientific and grey literature on Quality 4.0 and zero-defect manufacturing (ZDM) frameworks to develop an integrated quality 4.0 framework…

Abstract

Purpose

This research paper aims to analyze the scientific and grey literature on Quality 4.0 and zero-defect manufacturing (ZDM) frameworks to develop an integrated quality 4.0 framework (IQ4.0F) for quality improvement (QI) based on Six Sigma and machine learning (ML) techniques towards ZDM. The IQ4.0F aims to contribute to the advancement of defect prediction approaches in diverse manufacturing processes. Furthermore, the work enables a comprehensive analysis of process variables influencing product quality with emphasis on the use of supervised and unsupervised ML techniques in Six Sigma’s DMAIC (Define, Measure, Analyze, Improve and Control) cycle stage of “Analyze.”

Design/methodology/approach

The research methodology employed a systematic literature review (SLR) based on PRISMA guidelines to develop the integrated framework, followed by a real industrial case study set in the automotive industry to fulfill the objectives of verifying and validating the proposed IQ4.0F with primary data.

Findings

This research work demonstrates the value of a “stepwise framework” to facilitate a shift from conventional quality management systems (QMSs) to QMSs 4.0. It uses the IDEF0 modeling methodology and Six Sigma’s DMAIC cycle to structure the steps to be followed to adopt the Quality 4.0 paradigm for QI. It also proves the worth of integrating Six Sigma and ML techniques into the “Analyze” stage of the DMAIC cycle for improving defect prediction in manufacturing processes and supporting problem-solving activities for quality managers.

Originality/value

This research paper introduces a first-of-its-kind Quality 4.0 framework – the IQ4.0F. Each step of the IQ4.0F was verified and validated in an original industrial case study set in the automotive industry. It is the first Quality 4.0 framework, according to the SLR conducted, to utilize the principal component analysis technique as a substitute for “Screening Design” in the Design of Experiments phase and K-means clustering technique for multivariable analysis, identifying process parameters that significantly impact product quality. The proposed IQ4.0F not only empowers decision-makers with the knowledge to launch a Quality 4.0 initiative but also provides quality managers with a systematic problem-solving methodology for quality improvement.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 8 April 2024

Marta Mackiewicz and Marta Götz

This study is exploratory in nature and designed to address poorly documented issues in the literature. The dimensions of regional distribution or spatial organisation of Industry…

Abstract

Purpose

This study is exploratory in nature and designed to address poorly documented issues in the literature. The dimensions of regional distribution or spatial organisation of Industry 4.0 (I4.0), including the potential role of clusters, have only recently been addressed, with most available studies focusing on advanced, mainly Western European countries. Although developing fast, the literature on I4.0 in other countries, such as the Central and Eastern European or post-transition economies like Poland, needs to pay more attention to the spatial distribution or geographical and organisational aspects. In response to the identified knowledge gap, this paper aims to identify the role of clusters in the transformation towards I4.0. This explains why clusters may matter for advancing the fourth digital transformation, how advanced in implementing I4.0 solutions are the residents of Polish clusters and how they perceive the advantages of cluster membership for such implementation. Finally, it seeks to formulate policy recommendations based on the evidence gathered.

Design/methodology/approach

The methodology used in this study combines quantitative analysis of secondary data from a cluster benchmarking survey with a case study approach. The benchmarking survey, conducted by the polish agency for enterprise development in 2021, gathered responses from 435 cluster members and 41 cluster managers, representing an estimated 57% of the current clusters in Poland. In addition to quantitative analysis, a case study approach was used, incorporating primary sources such as interview with cluster managers and surveys of cluster members, as well as secondary sources like company documents and information from cluster organisation websites. Statistical analysis involved assessing the relationship between technology implementation and the adoption of management systems, as well as exploring potential correlations between technology use and company characteristics such as revenue, export revenue share and number of employees using Pearson correlation coefficient.

Findings

In Poland, implementing I4.0 technologies by cluster companies is still modest. The cluster has influenced the use of I4.0 technologies in 23% of surveyed companies. Every second surveyed company declared a positive impact of a cluster on technological advancement. The use of I4.0 technologies is not correlated with the revenue of clustered companies. A rather bleak picture emerges from the results, revealing a need for more interest among cluster members in advancing I4.0 technologies. This may be due to a comfortable situation in which firms still enjoy alternative competitive advantages that do not force them to seek new advanced advantages brought about by I4.0. It also reflects the sober approach and awareness of associated high costs and necessary investments, which are paramount and prevent successful I4.0 implementation.

Research limitations/implications

The limitations inherent in this study reflect the scarcity of the available data. This paper draws on the elementary survey administered centrally and is confined by the type of questions asked. The empirical section focuses on an important, though only one selected sector of the economy – the automotive industry. Nevertheless, the diagnosis of the Polish cluster’s role in advancing I4.0 should complement the existing literature.

Practical implications

The exploratory study concludes with policy recommendations and sets the stage for more detailed studies. Amidst the research’s limitations, this study pioneers a path for future comprehensive investigations, enabling a deeper understanding of Polish clusters’ maturity in I4.0 adoption. By comparing the authors’ analysis of the Polish Automotive Group (PGM) cluster with existing literature, the authors uncover a distinct disparity between the theoretical prominence of cluster catalysis and the current Polish reality. Future detailed dedicated enquiries will address these constraints and provide a more comprehensive map of Polish clusters’ I4.0 maturity.

Originality/value

This study identifies patterns of I4.0 implementation and diagnoses the role of clusters in the transformation towards I4.0. It investigates how advanced is the adoption of I4.0 solutions among the residents of Polish clusters and how they perceive the advantages of cluster membership for such transformation. Special attention was paid to the analysis of the automotive sector. Comparing the conclusions drawn from the analysis of the Polish PGM cluster in this case study to those from the literature on the subject, it becomes clear that the catalytic role of clusters in the implementation of I4.0 technologies by enterprises, as emphasised in the literature, is not yet fully reflected in the Polish reality.

Details

Digital Policy, Regulation and Governance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-5038

Keywords

Article
Publication date: 18 April 2024

Ramads Thekkoote

This paper uses the complex proportionality assessment (COPRAS) method to examine the driving factors of Industry 4.0 (I4) technologies for lean implementation in small and…

Abstract

Purpose

This paper uses the complex proportionality assessment (COPRAS) method to examine the driving factors of Industry 4.0 (I4) technologies for lean implementation in small and medium-sized enterprises (SMEs).

Design/methodology/approach

Adopting I4 technology is imperative for SMEs seeking to maintain competitiveness within the manufacturing sector. A thorough understanding of the driving factors involved is required to support the implementation of I4. For this objective, the multi-criteria decision-making (MCDM) tool COPRAS was used to efficiently analyze and rank these driving elements based on their importance. These factors can help small and medium-sized firms (SMEs) prioritize their efforts and investments in I4 technologies for lean implementation.

Findings

This study evaluates and prioritizes the nine I4 factors according to the perceptions of SMEs. The ranking offers significant insights into the factors SMEs consider more accessible and effective when adopting I4 technologies.

Originality/value

The author's original contribution is to examine I4 driving factors for lean implementation in SMEs using COPRAS.

Details

The TQM Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1754-2731

Keywords

Article
Publication date: 24 April 2023

Daniele dos Reis Pereira Maia, Fabiane Letícia Lizarelli and Lillian Do Nascimento Gambi

There is increasing interest in the connection between Industry 4.0 (I4.0) and operational excellence approaches; however, studies on the integration between Six Sigma (SS) and…

Abstract

Purpose

There is increasing interest in the connection between Industry 4.0 (I4.0) and operational excellence approaches; however, studies on the integration between Six Sigma (SS) and I4.0 have been absent from the literature. Integration with I4.0 technologies can maximize the positive effects of SS. The purpose of this study is to understand what types of relationships exist between SS and I4.0 and with I4.0's technologies, as well as the benefits derived from this integration and future directions for this field of study.

Design/methodology/approach

A Systematic Literature Review (SLR) was carried out to analyze studies about connections between I4.0 technologies and SS. SLR analyzed 59 articles from 2013 to 2021 extracted from the Web of Science and Scopus databases, including documents from journals and conferences.

Findings

The SLR identified relationships between SS and several I4.0 technologies, the most cited and with the greatest possibilities of relationships being Big Data/Big Data Analytics (BDA) and Internet of Things (IoT). Three main types of relationships were identified: (1) support of I4.0 technologies to SS; (2) assistance from the SS to the introduction of I4.0 technologies, and, to a lesser extent; (3) incompatibilities between SS and I4.0 technologies. The benefits are mainly related to availability of large data sets and real-time information, enabling better decision-making in less time.

Practical implications

In addition, the study can help managers to understand the integration relationships, which may encourage companies to adopt SS/Lean Six Sigma (LSS) in conjunction with I4.0 technologies. The results also drew attention to the incompatibilities between SS and I4.0 to anticipate potential barriers to implementation.

Originality/value

The study focuses on three previously unexplored subjects: the connection between SS and I4.0, the existing relationships with different technologies and the benefits resulting from the relationships. In addition, the study compiled and structured different types of relationships for SS and I4.0 and I4.0's technologies, identifying patterns and presenting evidence on how these relationships occur. Finally, exposes current trends and possible research directions.

Details

Benchmarking: An International Journal, vol. 31 no. 3
Type: Research Article
ISSN: 1463-5771

Keywords

Open Access
Article
Publication date: 26 July 2023

Sivarajah Rajumesh

The study aims to explore the overall growth trend, top publishing countries, co-authorship and author keywords in the field of Industry 5.0.

1357

Abstract

Purpose

The study aims to explore the overall growth trend, top publishing countries, co-authorship and author keywords in the field of Industry 5.0.

Design/methodology/approach

This study presents the outcomes of a bibliometric analysis conducted using VOSviewer software. The analysis retrieved data from the Scopus database, including citations, co-authors, keywords, bibliometric coupling and co-occurrence.

Findings

The findings reveal a significant increase in publications and citations related to Industry 5.0 in recent years. China, the USA and India emerge as the leading countries driving research in this field. The co-authorship analysis indicates limited collaboration among authors, with only 48 out of 354 authors being linked through co-authorship. Through co-occurrence analysis, the investigation identifies the most frequently occurring keywords in the research, with “Industry 5.0” and “Industry 4.0” being the most frequently co-occurring keywords. The bibliographic coupling analysis identifies six clusters of research themes.

Research limitations/implications

The study solely relies on data gathered from the Scopus database for analysis on a specific date. Therefore, data from other databases collected at different times may yield different observations and findings.

Practical implications

This study enhances the knowledge of professionals and academia in Industry 5.0, enabling the professionals to efficiently and sustainably manage the sector.

Originality/value

The bibliometric analysis presented in this study provides valuable insights into the contributions made by authors, keywords and co-authors to the field of Industry 5.0. Additionally, the thematic analysis summarized in this study is a novel contribution to the field.

Details

Journal of Business and Socio-economic Development, vol. 4 no. 2
Type: Research Article
ISSN: 2635-1374

Keywords

1 – 10 of over 1000