Search results

1 – 10 of 783
Open Access
Article
Publication date: 28 November 2022

Elena Stefana, Paola Cocca, Federico Fantori, Filippo Marciano and Alessandro Marini

This paper aims to overcome the inability of both comparing loss costs and accounting for production resource losses of Overall Equipment Effectiveness (OEE)-related approaches.

1538

Abstract

Purpose

This paper aims to overcome the inability of both comparing loss costs and accounting for production resource losses of Overall Equipment Effectiveness (OEE)-related approaches.

Design/methodology/approach

The authors conducted a literature review about the studies focusing on approaches combining OEE with monetary units and/or resource issues. The authors developed an approach based on Overall Equipment Cost Loss (OECL), introducing a component for the production resource consumption of a machine. A real case study about a smart multicenter three-spindle machine is used to test the applicability of the approach.

Findings

The paper proposes Resource Overall Equipment Cost Loss (ROECL), i.e. a new KPI expressed in monetary units that represents the total cost of losses (including production resource ones) caused by inefficiencies and deviations of the machine or equipment from its optimal operating status occurring over a specific time period. ROECL enables to quantify the variation of the product cost occurring when a machine or equipment changes its health status and to determine the actual product cost for a given production order. In the analysed case study, the most critical production orders showed an actual production cost about 60% higher than the minimal cost possible under the most efficient operating conditions.

Originality/value

The proposed approach may support both production and cost accounting managers during the identification of areas requiring attention and representing opportunities for improvement in terms of availability, performance, quality, and resource losses.

Details

International Journal of Productivity and Performance Management, vol. 73 no. 11
Type: Research Article
ISSN: 1741-0401

Keywords

Article
Publication date: 25 April 2024

Ahmad Ghaith and Ma Huimin

Organizations working in high-hazard environments contribute significantly to modern society and the economy, not only for the valuable resources they hold but also for the…

Abstract

Purpose

Organizations working in high-hazard environments contribute significantly to modern society and the economy, not only for the valuable resources they hold but also for the indispensable products and services they provide, such as power generation, transportation and defense weapons. Therefore, the main purpose of this study is to develop a framework that outlines future research on systems safety and provides a better understanding of how organizations can effectively manage hazard events.

Design/methodology/approach

In this research, we developed the high hazard theory (HHT) and a theoretical framework based on the grounded theory method (GTM) and the integration of three established theoretical perspectives: normal accident theory (NAT), high reliability theory (HRT) and resilience engineering (RE) theory.

Findings

We focused on the temporal aspect of accidents to create a timeline showing the progression of hazard events and the factors contributing to safety and hazards in organizations. Given the limitations of the previous theories in providing a coherent explanation of hazard event escalation in high-hazard organizations (HHOs), we argue that the highlighted theories can be more complementary than contradictory regarding their standpoints on disasters and accident prevention.

Practical implications

A proper appreciation of the hazard nature of organizations can help reduce their susceptibility to failure, prevent outages and breakdowns of systems, identify areas for improvement and develop strategies to enhance performance.

Originality/value

By developing HHT, we contribute to systems safety research by developing a new, refined theory and enrich the theoretical debate. We also expand the understanding of scholars and practitioners about the characteristics of organizations working in high-hazard environments.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 23 April 2024

Jiwon Chung, Hyunbin Won, Hannah Lee, Soah Park, Hyewon Ahn, Suhyun Pyeon, Jeong Eun Yoon and Sumin Koo

The objective of this study was to develop wearable suit platforms with various anchoring structure designs with the intention of improving wearability and enhancing user…

Abstract

Purpose

The objective of this study was to develop wearable suit platforms with various anchoring structure designs with the intention of improving wearability and enhancing user satisfaction.

Design/methodology/approach

This study selected fabrics and materials for the suit platform through material performance tests. Two anchoring structure designs, 11-type and X-type are compared with regular clothing under control conditions. To evaluate the comfort level of the wearable suit platform, a satisfaction survey and electroencephalogram (EEG) measurements are conducted to triangulate the findings.

Findings

The 11-type exhibited higher values in comfort indicators such as α, θ, α/High-β and lower values in concentration or stress indicators such as β, ϒ, sensorimotor rhythm (SMR)+Mid-β/θ, and a spectral edge frequency of 95% compared to the X-type while walking. The 11-type offers greater comfort and satisfaction compared to the X-type when lifting based on the EEG measurements and the participants survey.

Originality/value

It is recommended to implement the 11-type when designing wearable suit platforms. These findings offer essential data on wearability, which can guide the development of soft wearable robots.

Details

International Journal of Clothing Science and Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 16 April 2024

Rahadian Haryo Bayu Sejati, Dermawan Wibisono and Akbar Adhiutama

This paper aims to design a hybrid model of knowledge-based performance management system (KBPMS) for facilitating Lean Six-Sigma (L6s) application to increase contractor…

Abstract

Purpose

This paper aims to design a hybrid model of knowledge-based performance management system (KBPMS) for facilitating Lean Six-Sigma (L6s) application to increase contractor productivity without compromising human safety in Indonesian upstream oil field operations that manage ageing and life extension (ALE) facilities.

Design/methodology/approach

The research design applies a pragmatic paradigm by employing action research strategy with qualitative-quantitative methodology involving 385 of 1,533 workers. The KBPMS-L6s conceptual framework is developed and enriched with the Analytical Hierarchy Process (AHP) to prioritize fit-for-purpose Key Performance Indicators. The application of L6s with Human Performance Modes analysis is used to provide a statistical baseline approach for pre-assessment of the contractor’s organizational capabilities. A comprehensive literature review is given for the main pillars of the contextual framework.

Findings

The KBPMS-L6s concept has given an improved hierarchy for strategic and operational levels to achieve a performance benchmark to manage ALE facilities in Indonesian upstream oil field operations. To increase quality management practices in managing ALE facilities, the L6s application requires an assessment of the organizational capability of contractors and an analysis of Human Performance Modes (HPM) to identify levels of construction workers’ productivity based on human competency and safety awareness that have never been done in this field.

Research limitations/implications

The action research will only focus on the contractors’ productivity and safety performances that are managed by infrastructure maintenance programs for managing integrity of ALE facilities in Indonesian upstream of oil field operations. Future research could go toward validating this approach in other sectors.

Practical implications

This paper discusses the implications of developing the hybrid KBPMS- L6s enriched with AHP methodology and the application of HPM analysis to achieve a 14% reduction in inefficient working time, a 28% reduction in supervision costs, a 15% reduction in schedule completion delays, and a 78% reduction in safety incident rates of Total Recordable Incident Rate (TRIR), Days Away Restricted or Job Transfer (DART) and Motor Vehicle Crash (MVC), as evidence of achieving fit-for-purpose KPIs with safer, better, faster, and at lower costs.

Social implications

This paper does not discuss social implications

Originality/value

This paper successfully demonstrates a novel use of Knowledge-Based system with the integration AHP and HPM analysis to develop a hybrid KBPMS-L6s concept that successfully increases contractor productivity without compromising human safety performance while implementing ALE facility infrastructure maintenance program in upstream oil field operations.

Details

International Journal of Lean Six Sigma, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 25 January 2024

Anil Kumar Inkulu and M.V.A. Raju Bahubalendruni

In the current era of Industry 4.0, the manufacturing industries are striving toward mass production with mass customization by considering human–robot collaboration. This study…

Abstract

Purpose

In the current era of Industry 4.0, the manufacturing industries are striving toward mass production with mass customization by considering human–robot collaboration. This study aims to propose the reconfiguration of assembly systems by incorporating multiple humans with robots using a human–robot task allocation (HRTA) to enhance productivity.

Design/methodology/approach

A human–robot task scheduling approach has been developed by considering task suitability, resource availability and resource selection through multicriteria optimization using the Linear Regression with Optimal Point and Minimum Distance Calculation algorithm. Using line-balancing techniques, the approach estimates the optimum number of resources required for assembly tasks operating by minimum idle time.

Findings

The task allocation schedule for a case study involving a punching press was solved using human–robot collaboration, and the approach incorporated the optimum number of appropriate resources to handle different types of proportion of resources.

Originality/value

This proposed work integrates the task allocation by human–robot collaboration and decrease the idle time of resource by integrating optimum number of resources.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 5 April 2024

Wenwei Huang, Deyu Zhong and Yanlin Chen

Construction enterprises are achieving the goal of production safety by increasingly focusing on the critical factor of “human” and the impact of individual characteristics on…

Abstract

Purpose

Construction enterprises are achieving the goal of production safety by increasingly focusing on the critical factor of “human” and the impact of individual characteristics on safety performance. Emotional intelligence is categorized into three models: skill-based, trait-based and emotional learning systems. However, the mechanism of action and the internal relationship between emotional intelligence and safety performance must be further studied. This study intends to examine the internal mechanism of emotional intelligence on safety performance in construction projects, which would contribute to the safety management of construction enterprises.

Design/methodology/approach

A structural equation model exploring the relationship between emotional intelligence and safety performance is developed, with political skill introduced as an independent dimension, situational awareness presented as a mediator, and management safety commitment introduced as a moderator. Data were collected by a random questionnaire and analyzed by SPSS 24.0 and AMOS 26.0. The structural equation model tested the mediation hypothesis, and the PROCESS macro program tested the moderated mediation hypothesis.

Findings

The results showed that construction workers' emotional intelligence directly correlates with safety performance, and situational awareness plays a mediating role in the relationship between emotional intelligence and the safety performance of construction workers. Management safety commitment weakens the positive predictive relationships between emotional intelligence and situational awareness and between emotional intelligence and safety performance.

Originality/value

This research reveals a possible impact of emotional intelligence on safety performance. Adding political skills to the skill-based model of emotional intelligence received a test pass. Political skill measures the sincere and cooperative skills of construction workers. Using people as a critical element plays a role in the benign mechanism of “Emotional Intelligence – Situational Awareness – Safety Performance.” Improving emotional intelligence skills through training, enhancing situational awareness, understanding, anticipation and coordination and activating management environment factors can improve safety performance. Construction enterprises should evaluate and train workers' emotional intelligence to improve workers' situational awareness and safety performance.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 17 April 2024

Hazwani Shafei, Rahimi A. Rahman, Yong Siang Lee and Che Khairil Izam Che Ibrahim

Amid rapid technological progress, the construction industry is embracing Construction 4.0, redefining work practices through emerging technologies. However, the implications of…

Abstract

Purpose

Amid rapid technological progress, the construction industry is embracing Construction 4.0, redefining work practices through emerging technologies. However, the implications of Construction 4.0 technologies to enhancing well-being are still poorly understood. Particularly, the challenge lies in selecting technologies that critically contribute to well-being enhancement. Therefore, this study aims to evaluate the implications of Construction 4.0 technologies to enhancing well-being.

Design/methodology/approach

A list of Construction 4.0 technologies was identified from a national strategic plan on Construction 4.0, using Malaysia as a case study. Fourteen construction industry experts were selected to evaluate the implications of Construction 4.0 technologies on well-being using fuzzy Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The expert judgment was measured using linguistic variables that were transformed into fuzzy values. Then, the collected data was analyzed using the following analyses: fuzzy TOPSIS, Pareto, normalization, sensitivity, ranking performance and correlation.

Findings

Six Construction 4.0 technologies are critical to enhancing well-being: cloud & real-time collaboration, big data & predictive analytics, Internet of Things, building information modeling, autonomous construction and augmented reality & virtualization. In addition, artificial intelligence and advanced building materials are recommended to be implemented simultaneously as a very strong correlation exists between them.

Originality/value

The novelty of this study lies in a comprehensive understanding of the implications of Construction 4.0 technologies to enhancing well-being. The findings can assist researchers, industry practitioners and policymakers in making well-informed decisions to select Construction 4.0 technologies when targeting the enhancement of the overall well-being of the local construction industry.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 17 February 2022

Manish Kumar Ghodki

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and…

Abstract

Purpose

Electric motor heating during biomass recovery and its handling on conveyor is a serious concern for the motor performance. Thus, the purpose of this paper is to design and develop a hardware prototype of master–slave electric motors based biomass conveyor system to use the motors under normal operating conditions without overheating.

Design/methodology/approach

The hardware prototype of the system used master–slave electric motors for embedded controller operated robotic arm to automatically replace conveyor motors by one another. A mixed signal based embedded controller (C8051F226DK), fully compliant with IEEE 1149.1 specifications, was used to operate the entire system. A precise temperature measurement of motor with the help of negative temperature coefficient sensor was possible due to the utilization of industry standard temperature controller (N76E003AT20). Also, a pulse width modulation based speed control was achieved for master–slave motors of biomass conveyor.

Findings

As compared to conventional energy based mains supply, the system is self-sufficient to extract more energy from solar supply with an energy increase of 11.38%. With respect to conventional energy based \ of 47.31%, solar energy based higher energy saving of 52.69% was reported. Also, the work achieved higher temperature reduction of 34.26% of the motor as compared to previous cooling options.

Originality/value

The proposed technique is free from air, liquid and phase-changing material based cooling materials. As a consequence, the work prevents the wastage of these materials and does not cause the risk of health hazards. Also, the motors are used with their original dimensions without facing any leakage problems.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 13 July 2023

Haitham Alajmani, Salma Ahmed and Sameh Monir El-Sayegh

This paper aims to measure the severity, frequency and importance of the factors causing delays in the United Arab Emirates (UAE) construction industry following the Covid-19…

Abstract

Purpose

This paper aims to measure the severity, frequency and importance of the factors causing delays in the United Arab Emirates (UAE) construction industry following the Covid-19 pandemic onset. The study also measures the likelihood of the effects caused by these delays.

Design/methodology/approach

A mixed approach of both qualitative and quantitative. Literature review was conducted to extract 40 factors of delays and 10 effects of delays. A survey was then administered to construction professionals in the UAE to collect the perceptions on the severity and frequency of factors of the causes of delays using a Likert Scale of 1–5 where 1 represented very low and 5 represented very high. Similarly, the respondents were also asked to rate the likelihood of the occurrence of the effects of the delays based on a Likert scale of 1–5 as well. Furthermore, Spearman’s rank correlation was also conducted to compute the level of agreement between the different parties; owner, consultants and contractors.

Findings

The results revealed that the top five factors of delays include: award the project for the lowest bidder, delay in progress payment, change orders by the owner, poor subcontractor performance and inadequate planning and scheduling by the contractor. The findings of this study emphasize the financial challenges and economic crisis brought upon the construction industry due to the pandemic. Furthermore, the pandemic also shifted the perceptions of construction professionals, who are now more aware of the delays caused by awarding the project to the lowest bidder who would not have the required qualifications to conduct efficient planning and scheduling that are relevant in the case of extraordinary events such as Covid-19. Moreover, a high level of agreement between the consultants and contractors was observed, with a Spearman’s rank correlation of 0.804. Additionally, the most likely effects of delays concluded from this study were time overrun/extension and poor quality of work.

Originality/value

Literature review is very rich in the field of construction projects delays. However, there is very limited research on the impact of Covid-19 in the context of construction projects delays, and insights from construction professionals regarding this matter are particularly lacking in literature. Therefore, this paper bridges the gap in literature by providing perceptions of construction professionals on the impact of Covid-19 on the factors causing delays in the UAE construction industry. The findings of this research are expected to be an invaluable resource for future to help the construction industry heal faster when encountering similar epidemics or extraordinary events.

Details

Journal of Financial Management of Property and Construction , vol. 29 no. 1
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 29 February 2024

Jeroen van der Heijden

By providing an overview of the existing knowledge on public governance in the context of Construction 4.0, this review serves as a valuable resource for researchers, policymakers…

Abstract

Purpose

By providing an overview of the existing knowledge on public governance in the context of Construction 4.0, this review serves as a valuable resource for researchers, policymakers and practitioners interested in understanding the current state of public governance in the context of Construction 4.0 and identifying avenues for future research and practical implementation.

Design/methodology/approach

This article presents a systematic and comprehensive review of the academic literature on public governance in the context of Construction 4.0. To ensure a systematic and rigorous selection of source material, the study adopts the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.

Findings

By examining a wide range of scholarly works, the review identifies and discusses eight recurring themes that are crucial for understanding the role of public governance in Construction 4.0. These themes include policy and regulation, infrastructure and investment, skill development and education, digital inclusion and access, collaboration and partnerships, data governance and privacy, interactions with environmental and societal goals and the impact of Construction 4.0 on public governance itself. The review highlights a significant disparity between the normative debates on the importance of public governance in Construction 4.0 and the empirical knowledge available regarding its practical implementation. While the literature emphasizes the need for effective governance mechanisms to address the challenges and opportunities presented by Construction 4.0, there is a notable lack of empirical research examining the actual implementation and outcomes of public governance strategies.

Originality/value

This is the first systematic review of academic literature on public governance in the context of Construction 4.0.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 10 of 783