Search results

1 – 10 of 106
Open Access
Article
Publication date: 21 January 2021

Marcus Bengtsson, Lars-Gunnar Andersson and Pontus Ekström

The purpose of the study is to test if it, by the use of a survey methodology, is possible to measure managers' awareness on, and specifically if there exist preconceived beliefs…

2020

Abstract

Purpose

The purpose of the study is to test if it, by the use of a survey methodology, is possible to measure managers' awareness on, and specifically if there exist preconceived beliefs on, overall equipment effectiveness (OEE) results. The paper presents the design of the survey methodology as well as a test of the survey in one case company.

Design/methodology/approach

Actual OEE logs from a case company are collected and a survey on the data is designed and managers at the same case company are asked to answer the survey. The survey results are followed-up by an interview study in order to get deeper insights to both the results of the survey as well as the OEE strategy at the case company.

Findings

The findings show that the managers at this particular case company, on a general level, does not suffer too much from preconceived beliefs. However, it is clear that the managers have a preconceived belief that lack of material is logged as a loss much more often than what it actually is.

Research limitations/implications

The test has only been performed with data from one case company within the automotive manufacturing industry and only the managers at that case company has been active in the test.

Practical implications

The survey methodology can be replicated and used by other companies to find out how aware their employees are on their OEE results and if possible preconceived beliefs exists.

Originality/value

To the authors' knowledge, this is the first attempt at measuring if preconceived beliefs on OEE results exist.

Details

Journal of Quality in Maintenance Engineering, vol. 28 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Open Access
Article
Publication date: 23 May 2023

Roland Ryndzionek, Michal Michna, Filip Kutt, Grzegorz Kostro and Krzysztof Blecharz

The purpose of this paper is to provide an analysis of the performance of a new five-phase doubly fed induction generator (DFIG).

Abstract

Purpose

The purpose of this paper is to provide an analysis of the performance of a new five-phase doubly fed induction generator (DFIG).

Design/methodology/approach

This paper presents the results of a research work related to five-phase DFIG framing, including the development of an analytical model, FEM analysis as well as the results of laboratory tests of the prototype. The proposed behavioral level analytical model is based on the winding function approach. The developed DFIG model was used at the design stage to simulate the generator’s no-load and load state. Then, the results of the FEM analysis were shown and compared with the results of laboratory tests of selected DFIG operating states.

Findings

The paper provides the results of analytical and FEM simulation and measurement tests of the new five-phase dual-feed induction generator. The use of the MATLAB Simscape modeling language allows for easy and quick implementation of the model. Design assumptions and analytical model-based analysis have been verified using FEM analysis and measurements performed on the prototype. The results of the presented research validate the design process as well as show the five-phase winding design advantage over the three-phase solution regarding the control winding power quality.

Research limitations/implications

The main disadvantage of the winding function approach-based model development is the simplification regarding omitting the tangential airgap flux density component. However, this fault only applies to large airgap machines and is insignificant in induction machines. The results of the DFIG analyses were limited to the basic operating states of the generator, i.e. the no-load state, the inductive and resistive load.

Practical implications

The novel DFIG with five phase rotor control winding can operate as a regular three-phase machine in an electric power generation system and allows for improved control winding power quality of the proposed electrical energy generation system. This increase in power quality is due to the rotor control windings inverter-based PWM supply voltage, which operates with a wider per-phase supply voltage range than a three-phase system. This phenomenon was quantified using control winding current harmonic analysis.

Originality/value

The paper provides the results of analytical and FEM simulation and measurement tests of the new five-phase dual-feed induction generator.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 14 December 2021

Łukasz Knypiński and Frédéric Gillon

The purpose of this paper is to develop an algorithm and software for determining the size of a line-start permanent magnet synchronous motor (LSPMSMs) based on its optimization.

Abstract

Purpose

The purpose of this paper is to develop an algorithm and software for determining the size of a line-start permanent magnet synchronous motor (LSPMSMs) based on its optimization.

Design/methodology/approach

The software consists of an optimization procedure that cooperates with a FEM model to provide the desired behavior of the motor under consideration. The proposed improved version of the genetic algorithm has modifications enabling efficient optimization of LSPMSMs. The objective function consists of three important functional parameters describing the designed machine. The 2-D field-circuit mathematical model of the dynamics operation of the LSPMSMs consists of transient electromagnetic field equations, equations describing electric windings and mechanical motion equations. The model has been developed in the ANSYS Maxwell environment.

Findings

In this proposed approach, the set of design variables contains the variables describing the stator and rotor structure. The improved procedure of the optimization algorithm makes it possible to find an optimal motor structure with correct synchronization properties. The proposed modifications make the optimization procedure faster and more

Originality/value

This proposed approach can be successfully applied to solve the design problems of LSPMSMs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 29 July 2020

Ghoulemallah Boukhalfa, Sebti Belkacem, Abdesselem Chikhi and Said Benaggoune

This paper presents the particle swarm optimization (PSO) algorithm in conjuction with the fuzzy logic method in order to achieve an optimized tuning of a proportional integral…

1227

Abstract

This paper presents the particle swarm optimization (PSO) algorithm in conjuction with the fuzzy logic method in order to achieve an optimized tuning of a proportional integral derivative controller (PID) in the DTC control loops of dual star induction motor (DSIM). The fuzzy controller is insensitive to parametric variations, however, with the PSO-based optimization approach we obtain a judicious choice of the gains to make the system more robust. According to Matlab simulation, the results demonstrate that the hybrid DTC of DSIM improves the speed loop response, ensures the system stability, reduces the steady state error and enhances the rising time. Moreover, with this controller, the disturbances do not affect the motor performances.

Details

Applied Computing and Informatics, vol. 18 no. 1/2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 14 March 2022

Mitja Garmut and Martin Petrun

This paper presents a comparative study of different stator-segmentation topologies of a permanent magnet synchronous machine (PMSM) used in traction drives and their effect on…

1131

Abstract

Purpose

This paper presents a comparative study of different stator-segmentation topologies of a permanent magnet synchronous machine (PMSM) used in traction drives and their effect on iron losses. Using stator segmentation allows one to achieve more significant copper fill factors, resulting in increased power densities and efficiencies. The segmentation of the stators creates additional air gaps and changes the soft magnetic material’s material properties due to the cut edge effect. The aim of this paper is to present an in-depth analysis of the influence of stator segmentation on iron losses. The main goal was to compare various segmentation methods under equal excitation conditions in terms of their influence on iron loss.

Design/methodology/approach

A transient finite element method analysis combined with an extended iron-loss model was used to evaluate discussed effects on the stator’s iron losses. The workflow to obtain a homogenized airgap length accounting for cut edge effects was established.

Findings

The paper concludes that the segmentation in most cases slightly decreases the iron losses in the stator because of the overall reduced magnetic flux density B due to the additional air gaps in the magnetic circuit. An increase of the individual components, as well as total power loss, was observed in the Pole Chain segmentation design. In general, segmentation did not change the total iron losses significantly. However, different segmentation methods resulted in the different distortion of the magnetic field and, consequently, in different iron loss compositions. The analysed segmentation methods exhibited different iron loss behaviour with respect to the operation points of the machine. The final finding is that analysed stator segmentations had a negligible influence on the total iron loss. Therefore, applying segmentation is an adequate measure to improve PMSMs as it enables, e.g. increase of the winding fill factor or simplifying the assembly processes, etc.

Originality/value

The influence of stator segmentation on iron losses was analysed. An in-depth evaluation was performed to determine how the discussed changes influence the individual iron loss components. A workflow was developed to achieve a computationally cheap homogenized model.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 8 December 2022

James Christopher Westland

This paper tests whether Bayesian A/B testing yields better decisions that traditional Neyman-Pearson hypothesis testing. It proposes a model and tests it using a large, multiyear…

1208

Abstract

Purpose

This paper tests whether Bayesian A/B testing yields better decisions that traditional Neyman-Pearson hypothesis testing. It proposes a model and tests it using a large, multiyear Google Analytics (GA) dataset.

Design/methodology/approach

This paper is an empirical study. Competing A/B testing models were used to analyze a large, multiyear dataset of GA dataset for a firm that relies entirely on their website and online transactions for customer engagement and sales.

Findings

Bayesian A/B tests of the data not only yielded a clear delineation of the timing and impact of the intellectual property fraud, but calculated the loss of sales dollars, traffic and time on the firm’s website, with precise confidence limits. Frequentist A/B testing identified fraud in bounce rate at 5% significance, and bounces at 10% significance, but was unable to ascertain fraud at the standard significance cutoffs for scientific studies.

Research limitations/implications

None within the scope of the research plan.

Practical implications

Bayesian A/B tests of the data not only yielded a clear delineation of the timing and impact of the IP fraud, but calculated the loss of sales dollars, traffic and time on the firm’s website, with precise confidence limits.

Social implications

Bayesian A/B testing can derive economically meaningful statistics, whereas frequentist A/B testing only provide p-value’s whose meaning may be hard to grasp, and where misuse is widespread and has been a major topic in metascience. While misuse of p-values in scholarly articles may simply be grist for academic debate, the uncertainty surrounding the meaning of p-values in business analytics actually can cost firms money.

Originality/value

There is very little empirical research in e-commerce that uses Bayesian A/B testing. Almost all corporate testing is done via frequentist Neyman-Pearson methods.

Details

Journal of Electronic Business & Digital Economics, vol. 1 no. 1/2
Type: Research Article
ISSN: 2754-4214

Keywords

Open Access
Article
Publication date: 30 March 2022

Mariusz Baranski, Wojciech Szelag and Wieslaw Lyskawinski

This paper aims to elaborate the method and algorithm for the analysis of the influence of temperature on back electromotive force (BEMF) waveforms in a line start permanent…

Abstract

Purpose

This paper aims to elaborate the method and algorithm for the analysis of the influence of temperature on back electromotive force (BEMF) waveforms in a line start permanent magnet synchronous motor (LSPMSM).

Design/methodology/approach

The paper presents a finite element analysis of temperature influence on BEMF and back electromotive coefficient in a LSPMSM. In this paper, a two-dimensional field model of coupled electromagnetic and thermal phenomena in the LSPMSM was presented. The influence of temperature on magnetic properties of the permanent magnets as well as on electric and thermal properties of the materials has been taken into account. Simulation results have been compared to measurements. The selected results have been presented and discussed.

Findings

The simulations results are compared with measurements to confirm the adequacy of this approach to the analysis of coupled electromagnetic-thermal problems.

Originality/value

The paper offers appropriate author’s software for the transient and steady-state analysis of coupled electromagnetic and thermal problems in LSPMS motor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 27 February 2024

Oscar F. Bustinza, Luis M. Molina Fernandez and Marlene Mendoza Macías

Machine learning (ML) analytical tools are increasingly being considered as an alternative quantitative methodology in management research. This paper proposes a new approach for…

Abstract

Purpose

Machine learning (ML) analytical tools are increasingly being considered as an alternative quantitative methodology in management research. This paper proposes a new approach for uncovering the antecedents behind product and product–service innovation (PSI).

Design/methodology/approach

The ML approach is novel in the field of innovation antecedents at the country level. A sample of the Equatorian National Survey on Technology and Innovation, consisting of more than 6,000 firms, is used to rank the antecedents of innovation.

Findings

The analysis reveals that the antecedents of product and PSI are distinct, yet rooted in the principles of open innovation and competitive priorities.

Research limitations/implications

The analysis is based on a sample of Equatorian firms with the objective of showing how ML techniques are suitable for testing the antecedents of innovation in any other context.

Originality/value

The novel ML approach, in contrast to traditional quantitative analysis of the topic, can consider the full set of antecedent interactions to each of the innovations analyzed.

Details

Journal of Enterprise Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1741-0398

Keywords

Open Access
Article
Publication date: 5 November 2020

Hongyuan Wang and Jingcheng Wang

The purpose of this paper aims to design an optimization control for tunnel boring machine (TBM) based on geological identification. For unknown geological condition, the authors…

Abstract

Purpose

The purpose of this paper aims to design an optimization control for tunnel boring machine (TBM) based on geological identification. For unknown geological condition, the authors need to identify them before further optimization. For fully considering multiple crucial performance of TBM, the authors establish an optimization problem for TBM so that it can be adapted to varying geology. That is, TBM can operate optimally under corresponding geology, which is called geology-adaptability.

Design/methodology/approach

This paper adopted k-nearest neighbor (KNN) algorithm with modification to identify geological conditions. The modification includes adjustment of weights in voting procedure and similarity distance measurement, which at suitable for engineering and enhance accuracy of prediction. The authors also design several key performances of TBM during operation, and built a multi-objective function. Further, the multi-objective function has been transformed into a single objective function by weighted-combination. The reformulated optimization was solved by genetic algorithm in the end.

Findings

This paper provides a support for decision-making in TBM control. Through proposed optimization control, the advance speed of TBM has been enhanced dramatically in each geological condition, compared with the results before optimizing. Meanwhile, other performances are acceptable and the method is verified by in situ data.

Originality/value

This paper fulfills an optimization control of TBM considering several key performances during excavating. The optimization is conducted under different geological conditions so that TBM has geological-adaptability.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 1 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 3 July 2017

Rahila Umer, Teo Susnjak, Anuradha Mathrani and Suriadi Suriadi

The purpose of this paper is to propose a process mining approach to help in making early predictions to improve students’ learning experience in massive open online courses…

6221

Abstract

Purpose

The purpose of this paper is to propose a process mining approach to help in making early predictions to improve students’ learning experience in massive open online courses (MOOCs). It investigates the impact of various machine learning techniques in combination with process mining features to measure effectiveness of these techniques.

Design/methodology/approach

Student’s data (e.g. assessment grades, demographic information) and weekly interaction data based on event logs (e.g. video lecture interaction, solution submission time, time spent weekly) have guided this design. This study evaluates four machine learning classification techniques used in the literature (logistic regression (LR), Naïve Bayes (NB), random forest (RF) and K-nearest neighbor) to monitor weekly progression of students’ performance and to predict their overall performance outcome. Two data sets – one, with traditional features and second, with features obtained from process conformance testing – have been used.

Findings

The results show that techniques used in the study are able to make predictions on the performance of students. Overall accuracy (F1-score, area under curve) of machine learning techniques can be improved by integrating process mining features with standard features. Specifically, the use of LR and NB classifiers outperforms other techniques in a statistical significant way.

Practical implications

Although MOOCs provide a platform for learning in highly scalable and flexible manner, they are prone to early dropout and low completion rate. This study outlines a data-driven approach to improve students’ learning experience and decrease the dropout rate.

Social implications

Early predictions based on individual’s participation can help educators provide support to students who are struggling in the course.

Originality/value

This study outlines the innovative use of process mining techniques in education data mining to help educators gather data-driven insight on student performances in the enrolled courses.

Details

Journal of Research in Innovative Teaching & Learning, vol. 10 no. 2
Type: Research Article
ISSN: 2397-7604

Keywords

1 – 10 of 106