Search results

1 – 10 of over 2000
Article
Publication date: 4 April 2016

Long Niu, Sachio Saiki, Shinsuke Matsumoto and Masahide Nakamura

The purpose of this paper is to establish an application platform that addresses expensive development cost and effort of indoor location-aware application (InL-Apps) problems…

Abstract

Purpose

The purpose of this paper is to establish an application platform that addresses expensive development cost and effort of indoor location-aware application (InL-Apps) problems caused by tightly coupling between InL-App and indoor positioning systems (IPSs).

Design/methodology/approach

To achieve this purpose, in this paper, the authors proposes a Web-based integration framework called Web-based Integration Framework for Indoor Location (WIF4InL). With a common data model, WIF4InL integrates indoor location data obtained from heterogeneous IPS. It then provides application-neutral application programming interface (API) for various InL-Apps.

Findings

The authors integrate two different IPS (RedPin and BluePin) using WIF4InL and conduct a comparative study which is based on sufficiency of essential capabilities of location-dependent queries among three systems: RedPin, BluePin and WIF4InL. WIF4InL supports more capabilities for the location-dependent queries. Through the data and operation integration, WIF4InL even enriches the existing proprietary IPS.

Originality/value

As WIF4InL allows the loose coupling between IPS and InL-Apps, it significantly improves reusability of indoor location information and operation.

Details

International Journal of Pervasive Computing and Communications, vol. 12 no. 1
Type: Research Article
ISSN: 1742-7371

Keywords

Open Access
Article
Publication date: 1 August 2019

Bart Valks, Monique Arkesteijn and Alexandra Den Heijer

The purpose of this study is to generate knowledge about the use of smart campus tools to improve the effective and efficient use of campuses. Many universities are facing a…

2483

Abstract

Purpose

The purpose of this study is to generate knowledge about the use of smart campus tools to improve the effective and efficient use of campuses. Many universities are facing a challenge in attuning their accommodation to organisational demand. How can universities invest their resources as effectively as possible and not in space that will be poorly utilized? The hypothesis of this paper is that by using smart campus tools, this problem can be solved.

Design/methodology/approach

To answer the research question, previous survey at 13 Dutch universities was updated and compared with a survey of various universities and other organizations. The survey consisted of interviews with structured and semi-structured questions, which resulted in a unified output for 27 cases.

Findings

Based on the output of the cases, the development of smart campus tools at Dutch universities was compared to that of international universities and other organizations. Furthermore, the data collection led to insights regarding the reasons for initiating smart campus tools, user and management information, costs and benefits and foreseen developments.

Originality/value

Although the use of smart tools in practice has gained significant momentum in the past few years, research on the subject is still very technology-oriented and not well-connected to facility management and real estate management. This paper provides an overview of the ways in which universities and organizations are currently supporting their users, improving the use of their buildings and reducing their energy footprint through the use of smart tools.

Article
Publication date: 7 August 2017

Wilson E. Sakpere, Nhlanhla Boyfriend Wilton Mlitwa and Michael Adeyeye Oshin

This research aims to focus on providing interventions to alleviate usability challenges to strengthen the overall accuracy and the navigation effectiveness in indoor and…

Abstract

Purpose

This research aims to focus on providing interventions to alleviate usability challenges to strengthen the overall accuracy and the navigation effectiveness in indoor and stringent environments through the experiential manipulation of technical attributes of the positioning and navigation system.

Design/methodology/approach

The study followed a quantitative and experimental method of empirical enquiry and software engineering and synthesis research methods. The study further entails three implementation processes, namely, map generation, positioning framework and navigation service using a prototype mobile navigation application that uses the near field communication (NFC) technology.

Findings

The approach and findings revealed that the capability of NFC in leveraging its low-cost infrastructure of passive tags, its availability in mobile devices and the ubiquity of the mobile device provided a cost-effective solution with impressive accuracy and usability. The positioning accuracy achieved was less than 9 cm. The usability improved from 44 to 96 per cent based on feedbacks given by respondents who tested the application in an indoor environment. These showed that NFC is a viable alternative to resolve the challenges identified in previous solutions and technologies.

Research limitations/implications

The major limitation of the navigation application was that there is no real-time update of user position. This can be investigated and extended further by using NFC in a hybrid make-up with WLAN, radio-frequency identification (RFID) or Bluetooth as a cost-effective solution for real-time indoor positioning because of their coverage and existing infrastructures. The hybrid positioning model, which merges two or more techniques or technologies, is becoming more popular and will improve its accuracy, robustness and usability. In addition, it will balance complexity, compensate for the limitations in the technologies and achieve real-time mobile indoor navigation. Although the presence of WLAN, RFID and Bluetooth technologies are likely to result in system complexity and high cost, NFC will reduce the system’s complexity and balance the trade-off.

Practical implications

Whilst limitations in existing indoor navigation technologies meant putting up with poor signal and poor communication capabilities, outcomes of the NFC framework will offer valuable insight. It presents new possibilities on how to overcome signal quality limitations at improved turn-around time in constrained indoor spaces.

Social implications

The innovations have a direct positive social impact in that it will offer new solutions to mobile communications in the previously impossible terrains such as underground platforms and densely covered spaces. With the ability to operate mobile applications without signal inhibitions, the quality of communication – and ultimately, life opportunities – are enhanced.

Originality/value

While navigating, users face several challenges, such as infrastructure complexity, high-cost solution, inaccuracy and usability. Hence, as a contribution, this paper presents a symbolic map and path architecture of a floor of the test-bed building that was uploaded to OpenStreetMap. Furthermore, the implementation of the RFID and the NFC architectures produced new insight on how to redress the limitations in challenged spaces. In addition, a prototype mobile indoor navigation application was developed and implemented, offering novel solution to the practical problems inhibiting navigation in indoor challenged spaces – a practical contribution to the community of practice.

Details

Journal of Engineering, Design and Technology, vol. 15 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 2 May 2023

Hang Guo, Xin Chen, Min Yu, Marcin Uradziński and Liang Cheng

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor

Abstract

Purpose

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor flight positioning.

Design/methodology/approach

The presented system was built on Light Detection and Ranging (LiDAR), Inertial Measurement Unit (IMU) and LiDAR-Lite devices. Based on this, one can obtain the aircraft's current attitude and the position vector relative to the target and control the attitudes and positions of the UAV to reach the specified target positions. While building a UAV positioning model relative to the target for indoor positioning scenarios under limited Global Navigation Satellite Systems (GNSS), the system detects the environment through the NVIDIA Jetson TX2 (Transmit Data) peripheral sensor, obtains the current attitude and the position vector of the UAV, packs the data in the format and delivers it to the flight controller. Then the flight controller controls the UAV by calculating the posture to reach the specified target position.

Findings

The authors used two systems in the experiment. The first is the proposed UAV, and the other is the Vicon system, our reference system for comparison purposes. Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Originality/value

Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 15 November 2018

Sultan Alamri

With the rapid development of the indoor spaces positioning technologies such as the radio-frequency identification (RFID), Bluetooth and WI-FI, the locations of indoor spatial…

Abstract

Purpose

With the rapid development of the indoor spaces positioning technologies such as the radio-frequency identification (RFID), Bluetooth and WI-FI, the locations of indoor spatial objects (static or moving) constitute an important foundation for a variety of applications. However, there are many challenges and limitations associated with the structuring and querying of spatial objects in indoor spaces. The purpose of this study is to address the current trends, limitations and future challenges associated with the structuring and querying of spatial objects in indoor spaces. Also it addresses the related features of indoor spaces such as indoor structures, positioning technologies and others.

Design/methodology/approach

In this paper, the author focuses on understanding the aspects and challenges of spatial database managements in indoor spaces. The author explains the differences between indoor spaces and outdoor spaces. Also examines the issues pertaining to indoor spaces positioning and the impact of different shapes and structures within these spaces. In addition, the author considers the varieties of spatial queries that relate specifically to indoor spaces.

Findings

Most of the research on data management in indoor spaces does not consider the issues and the challenges associated with indoor positioning such as the overlapping of Wi-Fi. The future trend of the indoor spaces includes included different shapes of indoors beside the current 2D indoor spaces on which the majority of the data structures and query processing for spatial objects have focused on. The diversities of the indoor environments features such as directed floors, multi-floors cases should be considered and studied. Furthermore, indoor environments include many special queries besides the common ones queries that used in outdoor spaces such as KNN, range and temporal queries. These special queries need to be considered in data management and querying of indoor environments.

Originality/value

To the best of the author’s knowledge, this paper successfully addresses the current trends, limitations and future challenges associated with the structuring and querying of spatial objects in indoor spaces.

Details

International Journal of Web Information Systems, vol. 14 no. 4
Type: Research Article
ISSN: 1744-0084

Keywords

Article
Publication date: 25 September 2019

Watthanasak Jeamwatthanachai, Mike Wald and Gary Wills

The purpose of this paper is to validate a framework for spatial representation, aka the spatial representation framework (SRF), to define spaces and building information required…

Abstract

Purpose

The purpose of this paper is to validate a framework for spatial representation, aka the spatial representation framework (SRF), to define spaces and building information required by people with visual impairment as a foundation of indoor maps for indoor navigation systems.

Design/methodology/approach

The SRF was first created with seven main components by a review of the relevant literature and state-of-the-art technologies shown in the preliminary study. This research comprised of two tasks: investigating problems and behaviors while accessing spaces and buildings by visually impaired people (VIP) and validating the SRF where 45 participants were recruited (30 VIP and 15 experts).

Findings

The findings revealed a list of problems and challenges were used to validate and redefine the spatial representation, which was validated by both VIP and experts. The framework subsequently consisted of 11 components categorized into five layers, each layer of which is responsible for a different function.

Research limitations/implications

This framework provides essential components required for building standard indoor maps as a foundation for indoor navigations systems for people with visual impairment.

Practical implications

This framework lays the foundation for a range of indoor-based applications by using this SRF to represent indoor spaces. Example applications include: indoor navigation by people with disabilities, robots and autonomous systems, security and surveillance, and context and spatial awareness.

Originality/value

This paper presents the validated spatial representation for indoor navigation by people with visual impairment with its details and description, methodology, results and findings of the validation of the SRF.

Details

Journal of Enabling Technologies, vol. 13 no. 4
Type: Research Article
ISSN: 2398-6263

Keywords

Article
Publication date: 11 October 2022

Jian Chen, Shaojing Song, Yang Gu and Shanxin Zhang

At present, smartphones are embedded with accelerometers, gyroscopes, magnetometers and WiFi sensors. Most researchers have delved into the use of these sensors for localization…

Abstract

Purpose

At present, smartphones are embedded with accelerometers, gyroscopes, magnetometers and WiFi sensors. Most researchers have delved into the use of these sensors for localization. However, there are still many problems in reducing fingerprint mismatching and fusing these positioning data. The purpose of this paper is to improve positioning accuracy by reducing fingerprint mismatching and designing a weighted fusion algorithm.

Design/methodology/approach

For the problem of magnetic mismatching caused by singularity fingerprint, derivative Euclidean distance uses adjacent fingerprints to eliminate the influence of singularity fingerprint. To improve the positioning accuracy and robustness of the indoor navigation system, a weighted extended Kalman filter uses a weighted factor to fuse multisensor data.

Findings

The scenes of the teaching building, study room and office building are selected to collect data to test the algorithm’s performance. Experiments show that the average positioning accuracies of the teaching building, study room and office building are 1.41 m, 1.17 m, and 1.77 m, respectively.

Originality/value

The algorithm proposed in this paper effectively reduces fingerprint mismatching and improve positioning accuracy by adding a weighted factor. It provides a feasible solution for indoor positioning.

Article
Publication date: 15 June 2023

Amna Salman and Wasiq Ahmad

The Operations and Maintenance (O&M) cost of a facility is typically 60–85% of the total life cycle cost of a building whereas its design and construction cost accounts for only…

Abstract

Purpose

The Operations and Maintenance (O&M) cost of a facility is typically 60–85% of the total life cycle cost of a building whereas its design and construction cost accounts for only 5–10%. Therefore, enhancing and optimizing the O&M of a facility is a crucial issue. In addition, with the increasing complexities in a building's operating systems, more technologically advanced solutions are required for proactively maintaining a facility. Thereby, a tool is needed which can optimize and reduce the cost of facility maintenance. One of the solutions is Augmented or Mixed Reality (AR/MR) technologies which can reduce repair time, training time and streamline inspections. Therefore, the purpose of this study is to establish contextual knowledge of AR/MR application in facilities operation and maintenance and present an implementation framework through the analysis and classification of articles published between 2015 and 2022.

Design/methodology/approach

To effectively understand all AR/MR applications in facilities management (FM), a systematic literature review is performed. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol was followed for searching and describing the search strategies. Keywords were identified through the concept mapping technique. The Scopus database and Google Scholar were employed to find relevant articles, books and conference papers. A thorough bibliometric analysis was conducted using VOS Viewer and subsequently, a thematic analysis was performed for the selected publications.

Findings

The use of AR/MR within facilities O&M could be categorized into five different application areas: (1) visualization; (2) maintenance; (3) indoor localization and positioning; (4) information management and (5) indoor environment. After a thematic analysis of the literature, it was found that maintenance and indoor localization were the most frequently used research application domains. The chronological evolution of AR/MR in FM is also presented along with the origin of publications, which showed that the technology is out of its infancy stage and is ready for implementation. However, literature showed many challenges hindering this goal, that is (1) reluctance of the organizational leadership to bear the cost of hardware and trainings for the employees, (2) Lack of BIM use in FM and (3) system lagging, crashing and unable to register the real environment. A preliminary framework is presented to overcome these challenges.

Originality/value

This study accommodates a variety of application domains within facilities O&M. The publications were systematically selected from the existing literature and then reviewed to exhibit various AR/MR applications to support FM. There have been no literature reviews that focus on AR and/or MR in the FM and this paper fills the gap by not only presenting its applications but also developing an implementation framework.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 2 November 2017

Yang Gu, Qian Song, Ming Ma, Yanghuan Li and Zhimin Zhou

Aiding information is frequently adopted to calibrate the errors from inertia-generated trajectories in pedestrian positioning. However, existing calibration methods lack interior…

Abstract

Purpose

Aiding information is frequently adopted to calibrate the errors from inertia-generated trajectories in pedestrian positioning. However, existing calibration methods lack interior connections and unanimity, making it difficult to incorporate multiple sources of aiding information. This paper aims to propose a unanimous anchor-based trajectory calibration framework, which is expandable to encompass different types of anchor information.

Design/methodology/approach

The concept of anchors is introduced to represent different types of aiding information, which are, in essence, different constraint conditions on inertia-derived raw trajectories. The foundation of the framework is a particle filter which is implemented based on various particle weight updating strategies using diverse types of anchor information. Herein, three representative anchors are chosen to elaborate and validate the proposed framework, namely, ultra-wide-band (UWB) ranging anchors, iBeacons and the building structure-based virtual anchors.

Findings

In the simulations, with the particle reweighting strategies of the proposed framework, the positioning errors can be compensated. In the experimental test in an office building in which three anchors, including one UWB anchor, one iBeacon and one building structure-based virtual anchor are deployed; the final positioning error is decreased from 1.9 to 1.2 m; and the heading error is reduced from about 21° to 7°, respectively.

Originality/value

Herein, an anchor-based unanimous trajectory calibration framework for inertial pedestrian positioning is proposed. This framework is applicable to the schemes with different configurations of the anchors and can be expanded to adopt as much anchor information as possible.

Details

Sensor Review, vol. 37 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 20 December 2022

Biyanka Ekanayake, Alireza Ahmadian Fard Fini, Johnny Kwok Wai Wong and Peter Smith

Recognising the as-built state of construction elements is crucial for construction progress monitoring. Construction scholars have used computer vision-based algorithms to…

Abstract

Purpose

Recognising the as-built state of construction elements is crucial for construction progress monitoring. Construction scholars have used computer vision-based algorithms to automate this process. Robust object recognition from indoor site images has been inhibited by technical challenges related to indoor objects, lighting conditions and camera positioning. Compared with traditional machine learning algorithms, one-stage detector deep learning (DL) algorithms can prioritise the inference speed, enable real-time accurate object detection and classification. This study aims to present a DL-based approach to facilitate the as-built state recognition of indoor construction works.

Design/methodology/approach

The one-stage DL-based approach was built upon YOLO version 4 (YOLOv4) algorithm using transfer learning with few hyperparameters customised and trained in the Google Colab virtual machine. The process of framing, insulation and drywall installation of indoor partitions was selected as the as-built scenario. For training, images were captured from two indoor sites with publicly available online images.

Findings

The DL model reported a best-trained weight with a mean average precision of 92% and an average loss of 0.83. Compared to previous studies, the automation level of this study is high due to the use of fixed time-lapse cameras for data collection and zero manual intervention from the pre-processing algorithms to enhance visual quality of indoor images.

Originality/value

This study extends the application of DL models for recognising as-built state of indoor construction works upon providing training images. Presenting a workflow on training DL models in a virtual machine platform by reducing the computational complexities associated with DL models is also materialised.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

1 – 10 of over 2000