Search results

1 – 10 of 321
Article
Publication date: 2 May 2023

Hang Guo, Xin Chen, Min Yu, Marcin Uradziński and Liang Cheng

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor…

Abstract

Purpose

In this study, an indoor sensor information fusion positioning system of the quadrotor unmanned aerial vehicle (UAV) was investigated to solve the problem of unstable indoor flight positioning.

Design/methodology/approach

The presented system was built on Light Detection and Ranging (LiDAR), Inertial Measurement Unit (IMU) and LiDAR-Lite devices. Based on this, one can obtain the aircraft's current attitude and the position vector relative to the target and control the attitudes and positions of the UAV to reach the specified target positions. While building a UAV positioning model relative to the target for indoor positioning scenarios under limited Global Navigation Satellite Systems (GNSS), the system detects the environment through the NVIDIA Jetson TX2 (Transmit Data) peripheral sensor, obtains the current attitude and the position vector of the UAV, packs the data in the format and delivers it to the flight controller. Then the flight controller controls the UAV by calculating the posture to reach the specified target position.

Findings

The authors used two systems in the experiment. The first is the proposed UAV, and the other is the Vicon system, our reference system for comparison purposes. Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Originality/value

Vicon positioning error can be considered lower than 2 mm from low to high-speed experiments. After comparison, experimental results demonstrated that the system could fully meet the requirements (less than 50 mm) in real-time positioning of the indoor quadrotor UAV flight. It verifies the accuracy and robustness of the proposed method compared with that of Vicon and achieves the aim of a stable indoor flight preliminarily.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 28 December 2021

Craig Proctor-Parker and Riaan Stopforth

The purpose of the research has been the primary consideration and evaluation of a cost effective, reliable, robust and simple process of radio frequency identification…

139

Abstract

Purpose

The purpose of the research has been the primary consideration and evaluation of a cost effective, reliable, robust and simple process of radio frequency identification (RFID)-based stock control, asset management and monitoring of concrete safety bollards used in the road environment. Likewise, the consideration of the use of the same system and technology to other items in and around the general road infrastructure.

Design/methodology/approach

The research approach undertaken has been an evaluation of the use of currently available RFID technology, with a key emphasis on low cost, ease of use, reliability and convenience. Practical field exercises completed in considering the relevant RFID tags and readers and associated software and apps and necessary software integration and development have been undertaken. At the same time, evaluating the specific limits created in the specific environment is being applied. Of particular interest has been the use of a moving scan in a vehicle drive-through or pass-bye, type reading system. This has been determined to be viable and completely practical, drastically reducing the key issue of time-taken. Practical application of the system from idea to real life application has been undertaken. The integration of the use of the RFID tag and reader system with necessary and related software to database upload and storage has been established. The creation of an online facility to allow the appropriate use of the data and to include the convenient output of an asset report has been undertaken.

Findings

The findings have provided the necessary insight confirming the use of RFID technology as a simple yet reliable, cost effective and adaptable stock control, asset management and geo-locating system in the road environment. The use of such systems in this particular environment is in its infancy, and is perhaps novel and original in the specific aspect of using the system to stock control, manage and monitor road safety concrete bollards and other roadside objects in the road environment.

Originality/value

To establish if in fact, stock control geo-locating can be reliably undertaken with the use of RFID tags and readers in the specific road and road construction environment, particularly with the use of moving RFID reading of passive tags. To establish the minimum requirements of a field usable RFID tag and reader, specifically applicable to the concrete safety bollards, however to other roadside furniture. To identify the minimum requirements of a function, simple app to minimise general requirements of the overall stock control and monitoring of the RFID-tagged objects. To establish the possibility of reading the tag data, global positioning system (GPS) location and video imaging footage as a single operation function. To determine the basic parameters or limits of the GPS geo-locating, on the proposed products selected and overall system. To determine the current best practice in respect of reasonable accuracy and detail in relation to price considerations to a fully function stock control and monitoring system. To identify the minimum requirements of an online database to receive, house and provide ongoing access to and report on the data. To identify the key differences and benefits between traditional stock control and monitoring systems, against that of proposed RFID tag, read and geo-locating system.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 15 July 2021

Nehemia Sugianto, Dian Tjondronegoro, Rosemary Stockdale and Elizabeth Irenne Yuwono

The paper proposes a privacy-preserving artificial intelligence-enabled video surveillance technology to monitor social distancing in public spaces.

Abstract

Purpose

The paper proposes a privacy-preserving artificial intelligence-enabled video surveillance technology to monitor social distancing in public spaces.

Design/methodology/approach

The paper proposes a new Responsible Artificial Intelligence Implementation Framework to guide the proposed solution's design and development. It defines responsible artificial intelligence criteria that the solution needs to meet and provides checklists to enforce the criteria throughout the process. To preserve data privacy, the proposed system incorporates a federated learning approach to allow computation performed on edge devices to limit sensitive and identifiable data movement and eliminate the dependency of cloud computing at a central server.

Findings

The proposed system is evaluated through a case study of monitoring social distancing at an airport. The results discuss how the system can fully address the case study's requirements in terms of its reliability, its usefulness when deployed to the airport's cameras, and its compliance with responsible artificial intelligence.

Originality/value

The paper makes three contributions. First, it proposes a real-time social distancing breach detection system on edge that extends from a combination of cutting-edge people detection and tracking algorithms to achieve robust performance. Second, it proposes a design approach to develop responsible artificial intelligence in video surveillance contexts. Third, it presents results and discussion from a comprehensive evaluation in the context of a case study at an airport to demonstrate the proposed system's robust performance and practical usefulness.

Details

Information Technology & People, vol. 37 no. 2
Type: Research Article
ISSN: 0959-3845

Keywords

Article
Publication date: 15 January 2024

Spencer Ii Ern Teo, Yuhan Zhou and Justin Ker-Wei Yeoh

Network coverage is crucial for the adoption of advanced Smart Home applications. The commonly used log-based path loss model is not able to accurately estimate WiFi signal…

Abstract

Purpose

Network coverage is crucial for the adoption of advanced Smart Home applications. The commonly used log-based path loss model is not able to accurately estimate WiFi signal strength in different houses, as it does not fully consider the impact of building morphology. To better describe the propagation of WiFi signals and achieve higher estimation accuracy, this paper studies the basic building morphology characteristics of houses.

Design/methodology/approach

A new path loss model based on a decision tree was proposed after measuring the WiFi signal strength passing through multiple housing units. Three types of regression models were tested and compared.

Findings

The findings demonstrate that the log-based path loss model fits small houses well, while the newly proposed nonlinear path loss model performs better in large houses (area larger than 125 m2 and area-to-perimeter ratio larger than 2.5). The impact of building design on path loss has been proven and specifically quantified in the model.

Originality/value

Proposed an improved model to estimate indoor network coverage. Quantify the impacts of building morphology on indoor WiFi signal strength. Improve WiFi signal strength estimation to support Smart Home applications.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 26 March 2024

Daniel Nygaard Ege, Pasi Aalto and Martin Steinert

This study was conducted to address the methodical shortcomings and high associated cost of understanding the use of new, poorly understood architectural spaces, such as…

Abstract

Purpose

This study was conducted to address the methodical shortcomings and high associated cost of understanding the use of new, poorly understood architectural spaces, such as makerspaces. The proposed quantified method of enhancing current post-occupancy evaluation (POE) practices aims to provide architects, engineers and building professionals with accessible and intuitive data that can be used to conduct comparative studies of spatial changes, understand changes over time (such as those resulting from COVID-19) and verify design intentions after construction through a quantified post-occupancy evaluation.

Design/methodology/approach

In this study, we demonstrate the use of ultra-wideband (UWB) technology to gather, analyze and visualize quantified data showing interactions between people, spaces and objects. The experiment was conducted in a makerspace over a four-day hackathon event with a team of four actively tracked participants.

Findings

The study shows that by moving beyond simply counting people in a space, a more nuanced pattern of interactions can be discovered, documented and analyzed. The ability to automatically visualize findings intuitively in 3D aids architects and visual thinkers to easily grasp the essence of interactions with minimal effort.

Originality/value

By providing a method for better understanding the spatial and temporal interactions between people, objects and spaces, our approach provides valuable feedback in POE. Specifically, our approach aids practitioners in comparing spaces, verifying design intent and speeding up knowledge building when developing new architectural spaces, such as makerspaces.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 25 April 2024

Long Zhao, Xiaoye Liu, Linxiang Li, Run Guo and Yang Chen

This study aims to realize efficient, fast and safe robot search task, the belief criteria decision-making approach is proposed to solve the object search task with an uncertain…

Abstract

Purpose

This study aims to realize efficient, fast and safe robot search task, the belief criteria decision-making approach is proposed to solve the object search task with an uncertain location.

Design/methodology/approach

The study formulates the robot search task as a partially observable Markov decision process, uses the semantic information to evaluate the belief state and designs the belief criteria decision-making approach. A cost function considering a trade-off among belief state, path length and movement effort is modelled to select the next best location in path planning.

Findings

The semantic information is successfully modelled and propagated, which can represent the belief of finding object. The belief criteria decision-making (BCDM) approach is evaluated in both Gazebo simulation platform and physical experiments. Compared to greedy, uniform and random methods, the performance index of path length and execution time is superior by BCDM approach.

Originality/value

The prior knowledge of robot working environment, especially semantic information, can be used for path planning to achieve efficient task execution in path length and execution time. The modelling and updating of environment information can lead a promising research topic to realize a more intelligent decision-making method for object search task.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 14 September 2023

Ruifeng Li and Wei Wu

In corridor environments, human-following robot encounter difficulties when the target turning around at the corridor intersections, as walls may cause complete occlusion. This…

102

Abstract

Purpose

In corridor environments, human-following robot encounter difficulties when the target turning around at the corridor intersections, as walls may cause complete occlusion. This paper aims to propose a collision-free following system for robot to track humans in corridors without a prior map.

Design/methodology/approach

In addition to following a target and avoiding collisions robustly, the proposed system calculates the positions of walls in the environment in real-time. This allows the system to maintain a stable tracking of the target even if it is obscured after turning. The proposed solution is integrated into a four-wheeled differential drive mobile robot to follow a target in a corridor environment in real-world.

Findings

The experimental results demonstrate that the robot equipped with the proposed system is capable of avoiding obstacles and following a human target robustly in the corridors. Moreover, the robot achieves a 90% success rate in maintaining a stable tracking of the target after the target turns around a corner with high speed.

Originality/value

This paper proposes a human target following system incorporating three novel features: a path planning method based on wall positions is introduced to ensure stable tracking of the target even when it is obscured due to target turns; improvements are made to the random sample consensus (RANSAC) algorithm, enhancing its accuracy in calculating wall positions. The system is integrated into a four-wheeled differential drive mobile robot effectively demonstrates its remarkable robustness and real-time performance.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 October 2023

Renan Ribeiro Do Prado, Pedro Antonio Boareto, Joceir Chaves and Eduardo Alves Portela Santos

The aim of this paper is to explore the possibility of using the Define-Measure-Analyze-Improve-Control (DMAIC) cycle, process mining (PM) and multi-criteria decision methods in…

Abstract

Purpose

The aim of this paper is to explore the possibility of using the Define-Measure-Analyze-Improve-Control (DMAIC) cycle, process mining (PM) and multi-criteria decision methods in an integrated way so that these three elements combined result in a methodology called the Agile DMAIC cycle, which brings more agility and reliability in the execution of the Six Sigma process.

Design/methodology/approach

The approach taken by the authors in this study was to analyze the studies arising from this union of concepts and to focus on using PM tools where appropriate to accelerate the DMAIC cycle by improving the first two steps, and to test using the AHP as a decision-making process, to bring more excellent reliability in the definition of indicators.

Findings

It was indicated that there was a gain with acquiring indicators and process maps generated by PM. And through the AHP, there was a greater accuracy in determining the importance of the indicators.

Practical implications

Through the results and findings of this study, more organizations can understand the potential of integrating Six Sigma and PM. It was just developed for the first two steps of the DMAIC cycle, and it is also a replicable method for any Six Sigma project where data acquisition through mining is possible.

Originality/value

The authors develop a fully applicable and understandable methodology which can be replicated in other settings and expanded in future research.

Details

International Journal of Lean Six Sigma, vol. 15 no. 3
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 19 October 2023

Sawsan Taha, Abdoulaye Kaba and Marzouq Ayed Al-Qeed

This study aims to investigate whether students would accept augmented reality technology in Al Ain University (AAU) libraries as part of digital library services.

Abstract

Purpose

This study aims to investigate whether students would accept augmented reality technology in Al Ain University (AAU) libraries as part of digital library services.

Design/methodology/approach

This study used a modified technology acceptance model–based survey instrument for data collection. Data was collected through an online questionnaire, which was sent to 400 students via email in March 2023. Out of the total participants, 176 students completed the questionnaire.

Findings

This study found that AAU students have a positive perception of augmented technology use in the library. They believe that augmented technology will be useful and easy to use, and students are willing to use it to access library resources and services.

Originality/value

This study contributes to the digital library perspectives in academic libraries.

Details

Digital Library Perspectives, vol. 40 no. 1
Type: Research Article
ISSN: 2059-5816

Keywords

Article
Publication date: 22 July 2022

Ying Tao Chai and Ting-Kwei Wang

Defects in concrete surfaces are inevitably recurring during construction, which needs to be checked and accepted during construction and completion. Traditional manual inspection…

Abstract

Purpose

Defects in concrete surfaces are inevitably recurring during construction, which needs to be checked and accepted during construction and completion. Traditional manual inspection of surface defects requires inspectors to judge, evaluate and make decisions, which requires sufficient experience and is time-consuming and labor-intensive, and the expertise cannot be effectively preserved and transferred. In addition, the evaluation standards of different inspectors are not identical, which may lead to cause discrepancies in inspection results. Although computer vision can achieve defect recognition, there is a gap between the low-level semantics acquired by computer vision and the high-level semantics that humans understand from images. Therefore, computer vision and ontology are combined to achieve intelligent evaluation and decision-making and to bridge the above gap.

Design/methodology/approach

Combining ontology and computer vision, this paper establishes an evaluation and decision-making framework for concrete surface quality. By establishing concrete surface quality ontology model and defect identification quantification model, ontology reasoning technology is used to realize concrete surface quality evaluation and decision-making.

Findings

Computer vision can identify and quantify defects, obtain low-level image semantics, and ontology can structurally express expert knowledge in the field of defects. This proposed framework can automatically identify and quantify defects, and infer the causes, responsibility, severity and repair methods of defects. Through case analysis of various scenarios, the proposed evaluation and decision-making framework is feasible.

Originality/value

This paper establishes an evaluation and decision-making framework for concrete surface quality, so as to improve the standardization and intelligence of surface defect inspection and potentially provide reusable knowledge for inspecting concrete surface quality. The research results in this paper can be used to detect the concrete surface quality, reduce the subjectivity of evaluation and improve the inspection efficiency. In addition, the proposed framework enriches the application scenarios of ontology and computer vision, and to a certain extent bridges the gap between the image features extracted by computer vision and the information that people obtain from images.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 10
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 10 of 321