Search results

1 – 10 of over 2000
To view the access options for this content please click here
Article
Publication date: 7 August 2017

Wilson E. Sakpere, Nhlanhla Boyfriend Wilton Mlitwa and Michael Adeyeye Oshin

This research aims to focus on providing interventions to alleviate usability challenges to strengthen the overall accuracy and the navigation effectiveness in indoor and…

Abstract

Purpose

This research aims to focus on providing interventions to alleviate usability challenges to strengthen the overall accuracy and the navigation effectiveness in indoor and stringent environments through the experiential manipulation of technical attributes of the positioning and navigation system.

Design/methodology/approach

The study followed a quantitative and experimental method of empirical enquiry and software engineering and synthesis research methods. The study further entails three implementation processes, namely, map generation, positioning framework and navigation service using a prototype mobile navigation application that uses the near field communication (NFC) technology.

Findings

The approach and findings revealed that the capability of NFC in leveraging its low-cost infrastructure of passive tags, its availability in mobile devices and the ubiquity of the mobile device provided a cost-effective solution with impressive accuracy and usability. The positioning accuracy achieved was less than 9 cm. The usability improved from 44 to 96 per cent based on feedbacks given by respondents who tested the application in an indoor environment. These showed that NFC is a viable alternative to resolve the challenges identified in previous solutions and technologies.

Research limitations/implications

The major limitation of the navigation application was that there is no real-time update of user position. This can be investigated and extended further by using NFC in a hybrid make-up with WLAN, radio-frequency identification (RFID) or Bluetooth as a cost-effective solution for real-time indoor positioning because of their coverage and existing infrastructures. The hybrid positioning model, which merges two or more techniques or technologies, is becoming more popular and will improve its accuracy, robustness and usability. In addition, it will balance complexity, compensate for the limitations in the technologies and achieve real-time mobile indoor navigation. Although the presence of WLAN, RFID and Bluetooth technologies are likely to result in system complexity and high cost, NFC will reduce the system’s complexity and balance the trade-off.

Practical implications

Whilst limitations in existing indoor navigation technologies meant putting up with poor signal and poor communication capabilities, outcomes of the NFC framework will offer valuable insight. It presents new possibilities on how to overcome signal quality limitations at improved turn-around time in constrained indoor spaces.

Social implications

The innovations have a direct positive social impact in that it will offer new solutions to mobile communications in the previously impossible terrains such as underground platforms and densely covered spaces. With the ability to operate mobile applications without signal inhibitions, the quality of communication – and ultimately, life opportunities – are enhanced.

Originality/value

While navigating, users face several challenges, such as infrastructure complexity, high-cost solution, inaccuracy and usability. Hence, as a contribution, this paper presents a symbolic map and path architecture of a floor of the test-bed building that was uploaded to OpenStreetMap. Furthermore, the implementation of the RFID and the NFC architectures produced new insight on how to redress the limitations in challenged spaces. In addition, a prototype mobile indoor navigation application was developed and implemented, offering novel solution to the practical problems inhibiting navigation in indoor challenged spaces – a practical contribution to the community of practice.

Details

Journal of Engineering, Design and Technology, vol. 15 no. 4
Type: Research Article
ISSN: 1726-0531

Keywords

To view the access options for this content please click here
Article
Publication date: 15 November 2018

Sultan Alamri

With the rapid development of the indoor spaces positioning technologies such as the radio-frequency identification (RFID), Bluetooth and WI-FI, the locations of indoor

Abstract

Purpose

With the rapid development of the indoor spaces positioning technologies such as the radio-frequency identification (RFID), Bluetooth and WI-FI, the locations of indoor spatial objects (static or moving) constitute an important foundation for a variety of applications. However, there are many challenges and limitations associated with the structuring and querying of spatial objects in indoor spaces. The purpose of this study is to address the current trends, limitations and future challenges associated with the structuring and querying of spatial objects in indoor spaces. Also it addresses the related features of indoor spaces such as indoor structures, positioning technologies and others.

Design/methodology/approach

In this paper, the author focuses on understanding the aspects and challenges of spatial database managements in indoor spaces. The author explains the differences between indoor spaces and outdoor spaces. Also examines the issues pertaining to indoor spaces positioning and the impact of different shapes and structures within these spaces. In addition, the author considers the varieties of spatial queries that relate specifically to indoor spaces.

Findings

Most of the research on data management in indoor spaces does not consider the issues and the challenges associated with indoor positioning such as the overlapping of Wi-Fi. The future trend of the indoor spaces includes included different shapes of indoors beside the current 2D indoor spaces on which the majority of the data structures and query processing for spatial objects have focused on. The diversities of the indoor environments features such as directed floors, multi-floors cases should be considered and studied. Furthermore, indoor environments include many special queries besides the common ones queries that used in outdoor spaces such as KNN, range and temporal queries. These special queries need to be considered in data management and querying of indoor environments.

Originality/value

To the best of the author’s knowledge, this paper successfully addresses the current trends, limitations and future challenges associated with the structuring and querying of spatial objects in indoor spaces.

Details

International Journal of Web Information Systems, vol. 14 no. 4
Type: Research Article
ISSN: 1744-0084

Keywords

To view the access options for this content please click here
Article
Publication date: 16 January 2017

Wei Zhang, Xianghong Hua, Kegen Yu, Weining Qiu, Xin Chang, Bang Wu and Xijiang Chen

Nowadays, WiFi indoor positioning based on received signal strength (RSS) becomes a research hotspot due to its low cost and ease of deployment characteristics. To further…

Abstract

Purpose

Nowadays, WiFi indoor positioning based on received signal strength (RSS) becomes a research hotspot due to its low cost and ease of deployment characteristics. To further improve the performance of WiFi indoor positioning based on RSS, this paper aims to propose a novel position estimation strategy which is called radius-based domain clustering (RDC). This domain clustering technology aims to avoid the issue of access point (AP) selection.

Design/methodology/approach

The proposed positioning approach uses each individual AP of all available APs to estimate the position of target point. Then, according to circular error probable, the authors search the decision domain which has the 50 per cent of the intermediate position estimates and minimize the radius of a circle via a RDC algorithm. The final estimate of the position of target point is obtained by averaging intermediate position estimates in the decision domain.

Findings

Experiments are conducted, and comparison between the different position estimation strategies demonstrates that the new method has a better location estimation accuracy and reliability.

Research limitations/implications

Weighted k nearest neighbor approach and Naive Bayes Classifier method are two classic position estimation strategies for location determination using WiFi fingerprinting. Both of the two strategies are affected by AP selection strategies and inappropriate selection of APs may degrade positioning performance considerably.

Practical implications

The RDC positioning approach can improve the performance of WiFi indoor positioning, and the issue of AP selection and related drawbacks is avoided.

Social implications

The RSS-based effective WiFi indoor positioning system can makes up for the indoor positioning weaknesses of global navigation satellite system. Many indoor location-based services can be encouraged with the effective and low-cost positioning technology.

Originality/value

A novel position estimation strategy is introduced to avoid the AP selection problem in RSS-based WiFi indoor positioning technology, and the domain clustering technology is proposed to obtain a better accuracy and reliability.

To view the access options for this content please click here
Article
Publication date: 18 June 2019

Chao Chen, Llewellyn Tang, Craig Matthew Hancock and Penghe Zhang

The purpose of this paper is to introduce the development of an innovative mobile laser scanning (MLS) method for 3D indoor mapping. The generally accepted and used…

Abstract

Purpose

The purpose of this paper is to introduce the development of an innovative mobile laser scanning (MLS) method for 3D indoor mapping. The generally accepted and used procedure for this type of mapping is usually performed using static terrestrial laser scanning (TLS) which is high-cost and time-consuming. Compared with conventional TLS, the developed method proposes a new idea with advantages of low-cost, high mobility and time saving on the implementation of a 3D indoor mapping.

Design/methodology/approach

This method integrates a low-cost 2D laser scanner with two indoor positioning techniques – ultra-wide band (UWB) and an inertial measurement unit (IMU), to implement a 3D MLS for reality captures from an experimental indoor environment through developed programming algorithms. In addition, a reference experiment by using conventional TLS was also conducted under the same conditions for scan result comparison to validate the feasibility of the developed method.

Findings

The findings include: preset UWB system integrated with a low-cost IMU can provide a reliable positioning method for indoor environment; scan results from a portable 2D laser scanner integrated with a motion trajectory from the IMU/UWB positioning approach is able to generate a 3D point cloud based in an indoor environment; and the limitations on hardware, accuracy, automation and the positioning approach are also summarized in this study.

Research limitations/implications

As the main advantage of the developed method is low-cost, it may limit the automation of the method due to the consideration of the cost control. Robotic carriers and higher-performance 2D laser scanners can be applied to realize panoramic and higher-quality scan results for improvements of the method.

Practical implications

Moreover, during the practical application, the UWB system can be disturbed by variances of the indoor environment, which can affect the positioning accuracy in practice. More advanced algorithms are also needed to optimize the automatic data processing for reducing errors caused by manual operations.

Originality/value

The development of this MLS method provides a novel idea that integrates data from heterogeneous systems or sensors to realize a practical aim of indoor mapping, and meanwhile promote the current laser scanning technology to a lower-cost, more flexible, more portable and less time-consuming trend.

Details

Engineering, Construction and Architectural Management, vol. 26 no. 7
Type: Research Article
ISSN: 0969-9988

Keywords

To view the access options for this content please click here
Article
Publication date: 28 November 2018

Qigao Fan, Jie Jia, Peng Pan, Hai Zhang and Yan Sun

The purpose of this paper is to relate to the real-time navigation and tracking of pedestrians in a closed environment. To restrain accumulated error of low-cost…

Abstract

Purpose

The purpose of this paper is to relate to the real-time navigation and tracking of pedestrians in a closed environment. To restrain accumulated error of low-cost microelectromechanical system inertial navigation system and adapt to the real-time navigation of pedestrians at different speeds, the authors proposed an improved inertial navigation system (INS)/pedestrian dead reckoning (PDR)/ultra wideband (UWB) integrated positioning method for indoor foot-mounted pedestrians.

Design/methodology/approach

This paper proposes a self-adaptive integrated positioning algorithm that can recognize multi-gait and realize a high accurate pedestrian multi-gait indoor positioning. First, the corresponding gait method is used to detect different gaits of pedestrians at different velocities; second, the INS/PDR/UWB integrated system is used to get the positioning information. Thus, the INS/UWB integrated system is used when the pedestrian moves at normal speed; the PDR/UWB integrated system is used when the pedestrian moves at rapid speed. Finally, the adaptive Kalman filter correction method is adopted to modify system errors and improve the positioning performance of integrated system.

Findings

The algorithm presented in this paper improves performance of indoor pedestrian integrated positioning system from three aspects: in the view of different pedestrian gaits at different speeds, the zero velocity detection and stride frequency detection are adopted on the integrated positioning system. Further, the accuracy of inertial positioning systems can be improved; the attitude fusion filter is used to obtain the optimal quaternion and improve the accuracy of INS positioning system and PDR positioning system; because of the errors of adaptive integrated positioning system, the adaptive filter is proposed to correct errors and improve integrated positioning accuracy and stability. The adaptive filtering algorithm can effectively restrain the divergence problem caused by outliers. Compared to the KF algorithm, AKF algorithm can better improve the fault tolerance and precision of integrated positioning system.

Originality/value

The INS/PDR/UWB integrated system is built to track pedestrian position and attitude. Finally, an adaptive Kalman filter is used to improve the accuracy and stability of integrated positioning system.

To view the access options for this content please click here
Article
Publication date: 19 June 2017

Xiaochun Tian, Jiabin Chen, Yongqiang Han, Jianyu Shang and Nan Li

This study aims to design an optimized algorithm for low-cost pedestrian navigation system (PNS) to correct the heading drift and altitude error, thus achieving…

Abstract

Purpose

This study aims to design an optimized algorithm for low-cost pedestrian navigation system (PNS) to correct the heading drift and altitude error, thus achieving high-precise pedestrian location in both two-dimensional (2-D) and three-dimensional (3-D) space.

Design/methodology/approach

A novel heading correction algorithm based on smoothing filter at the terminal of zero velocity interval (ZVI) is proposed in the paper. This algorithm adopts the magnetic sensor to calculate all the heading angles in the ZVI and then applies a smoothing filter to obtain the optimal heading angle. Furthermore, heading correction is executed at the terminal moment of ZVI. Meanwhile, an altitude correction algorithm based on step height constraint is proposed to suppress the altitude channel divergence of strapdown inertial navigation system by using the step height as the measurement of the Kalman filter.

Findings

The verification experiments were carried out in 2-D and 3-D space to evaluate the performance of the proposed pedestrian navigation algorithm. The results show that the heading drift and altitude error were well corrected. Meanwhile, the path calculated by the novel algorithm has a higher match degree with the reference trajectory, and the positioning errors of the 2-D and 3-D trajectories are both less than 0.5 per cent.

Originality/value

Besides zero velocity update, another two problems, namely, heading drift and altitude error in the PNS, are solved, which ensures the high positioning precision of pedestrian in indoor and outdoor environments.

To view the access options for this content please click here
Article
Publication date: 5 December 2019

Bo Cao, Shibo Wang, Shirong Ge, Wanli Liu, Shijia Wang and Shixue Yi

Wireless network localization technology is very popular in recent years and has attracted worldwide attention. The purpose of this paper is to improve the localization…

Abstract

Purpose

Wireless network localization technology is very popular in recent years and has attracted worldwide attention. The purpose of this paper is to improve the localization accuracy of ultra-wideband (UWB) with lower localization error taking into consideration the special real environment with the closed long and narrow space.

Design/methodology/approach

The principle of multidimensional scaling (MDS), particle swarm optimization (PSO) and Taylor series expansion algorithm (Taylor-D) were introduced. A novel positioning algorithm, MDS-PSO-Taylor was proposed to minimize the localization error. MDS-PSO algorithm provided a more accurate preliminary coordinate by applying the PSO algorithm so that the Taylor-D was used for further enhancing the localization accuracy.

Findings

Experimental results manifested that the proposed algorithm, providing small localization error value and higher positioning accuracy, can effectively reduce errors and achieve better performance in terms of the considerable improvement of localization accuracy.

Originality/value

The presented study with the real environment test attempts to demonstrate the proposed algorithm is hopeful to be applied to the underground environment for in the future.

Details

Sensor Review, vol. 40 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 2 November 2017

Yang Gu, Qian Song, Ming Ma, Yanghuan Li and Zhimin Zhou

Aiding information is frequently adopted to calibrate the errors from inertia-generated trajectories in pedestrian positioning. However, existing calibration methods lack…

Abstract

Purpose

Aiding information is frequently adopted to calibrate the errors from inertia-generated trajectories in pedestrian positioning. However, existing calibration methods lack interior connections and unanimity, making it difficult to incorporate multiple sources of aiding information. This paper aims to propose a unanimous anchor-based trajectory calibration framework, which is expandable to encompass different types of anchor information.

Design/methodology/approach

The concept of anchors is introduced to represent different types of aiding information, which are, in essence, different constraint conditions on inertia-derived raw trajectories. The foundation of the framework is a particle filter which is implemented based on various particle weight updating strategies using diverse types of anchor information. Herein, three representative anchors are chosen to elaborate and validate the proposed framework, namely, ultra-wide-band (UWB) ranging anchors, iBeacons and the building structure-based virtual anchors.

Findings

In the simulations, with the particle reweighting strategies of the proposed framework, the positioning errors can be compensated. In the experimental test in an office building in which three anchors, including one UWB anchor, one iBeacon and one building structure-based virtual anchor are deployed; the final positioning error is decreased from 1.9 to 1.2 m; and the heading error is reduced from about 21° to 7°, respectively.

Originality/value

Herein, an anchor-based unanimous trajectory calibration framework for inertial pedestrian positioning is proposed. This framework is applicable to the schemes with different configurations of the anchors and can be expanded to adopt as much anchor information as possible.

Details

Sensor Review, vol. 37 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

To view the access options for this content please click here
Article
Publication date: 19 September 2016

Jesus Victor Zegarra Flores, Laurence Rasseneur, Rodrigue Galani, Fabienne Rakitic and René Farcy

The purpose of this paper is to design and test effective indoor navigation solutions for visually impaired people in situations where GPS, bluetooth or Wi-Fi signals are…

Abstract

Purpose

The purpose of this paper is to design and test effective indoor navigation solutions for visually impaired people in situations where GPS, bluetooth or Wi-Fi signals are unavailable. The authors use the inertial measurement units (IMU), the compass and the barometer of a smart phone.

Design/methodology/approach

The authors have used commercial Android smart phones with IMU, compass and barometer to record a path and to give navigation instructions in an adapted way using a mobility-specific vocabulary. The method proposed is to save paths taking into account different indoor waypoints such as the stairs (change from one floor to another) and the change of direction of the trajectory of the path (e.g. one-fourth turn right or left), recording data from the IMU sensor’s, compass and barometer of the smart phone. Having this information and the characteristics of the each segment (distance, azimuth to the north and pressure) of the path, it is possible to provide functional navigation guidance to the visually impaired subject. Three different visually impaired people (one partially sighted and two fully blind) and three sighted people have tested the paths. The efficiency of the navigation is analyzed in terms of distance and time using the comparison between blind and sighted people.

Findings

The main finding is that it is possible to guide visually impaired people some hundreds of meters just using the sensors of a smart phone under certain conditions: the visually impaired person has to understand the guidance instructions and respect some strategies (e.g. not to walk diagonally across vast spaces). Additionally it is observed that the visually impaired participants walked distances, which are not much different to the optimal values. On the other hand; because of their hesitations using their white cane to find free paths, they take in some cases 50 percent more time to arrive (for a few minutes path, this time is not critical and even more efficient than looking for a guide). One thing to highlight is that even with this hesitation, the subjects arrived to the final destination.

Originality/value

This paper demonstrates how an IMU coupled to a compass and a barometer from a Smart Phone employing a spoken mobility language (e.g. next corridor to the left; at the end of the stairs turn right, turn left, etc.) can guide visually impaired people inside buildings.

Details

Journal of Assistive Technologies, vol. 10 no. 3
Type: Research Article
ISSN: 1754-9450

Keywords

To view the access options for this content please click here
Article
Publication date: 1 April 2014

Robert Schmitt and Yu Cai

Automated robotic assembly on a moving workpiece, referred to as assembly in motion, demands that an assembly robot is synchronised in all degrees of freedom to the moving…

Abstract

Purpose

Automated robotic assembly on a moving workpiece, referred to as assembly in motion, demands that an assembly robot is synchronised in all degrees of freedom to the moving workpiece, on which assembly parts are installed. Currently, this requirement cannot be met due to the lack of robust estimation of 3D positions and the trajectory of the moving workpiece. The purpose of this paper is to develop a camera system that measures the 3D trajectory of the moving workpiece for robotic assembly in motion.

Design/methodology/approach

For the trajectory estimation, an assembly robot-guided, monocular camera system is developed. The motion trajectory of a workpiece is estimated, as the trajectory is considered as a linear combination of trajectory bases, such as discrete cosine transform bases.

Findings

The developed camera system for trajectory estimation is tested within the robotic assembly of a cylinder block in motion. The experimental results show that the proposed method is able to reconstruct arbitrary trajectories of an assembly point on a workpiece moving in 3D space.

Research limitations/implications

With the developed technology, a point trajectory can be recovered offline only after all measurement images are acquired. For practical assembly tasks in real production, this method should be extended to determine the trajectory online during the motion of a workpiece.

Practical implications

For practical, robotic assembly in motion, such as assembling tires, wheels and windscreens on conveyed vehicle bodies, the developed technology can be used for positioning a moving workpiece, which is in the distant field of an assembly robot.

Originality/value

Besides laser trackers, indoor global positioning systems and stereo cameras, this paper provides a solution of trajectory estimation by using a monocular camera system.

Details

Assembly Automation, vol. 34 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

1 – 10 of over 2000