Search results

1 – 2 of 2
Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 20 November 2023

Reddy K. Prasanth Kumar, Nageswara Rao Boggarapu and S.V.S. Narayana Murty

This paper adopts a modified Taguchi approach to develop empirical relationships to the performance characteristics (output responses) in terms of process variables and…

Abstract

Purpose

This paper adopts a modified Taguchi approach to develop empirical relationships to the performance characteristics (output responses) in terms of process variables and demonstrated their validity through comparison of test data. The method suggests a few tests as per the orthogonal array and provides complete information for all combinations of levels and process variables. This method also provides the estimated range of output responses so that the scatter in the repeated tests can be assessed prior to the tests.

Design/methodology/approach

In order to obtain defect-free products meeting the required specifications, researchers have conducted extensive experiments using powder bed fusion (PBF) process measuring the performance indicators (namely, relative density, surface roughness and hardness) to specify a set of printing parameters (namely, laser power, scanning speed and hatch spacing). A simple and reliable multi-objective optimization method is considered in this paper for specifying a set of optimal process parameters with SS316 L powder. It was reported that test samples printed even with optimal set of input variables revealed irregular shaped, microscopic porosities and improper melt pool formation.

Findings

Finally, based on detailed analysis, it is concluded that it is impossible to express the performance indicators, explicitly in terms of equivalent energy density (E_0ˆ*), which is a combination of multiple sets of selective laser melting (SLM) process parameters, with different performance indicators. Empirical relations for the performance indicators are developed in terms of SLM process parameters. Test data are within/close to the expected range.

Practical implications

Based on extensive analysis of the SS316 L data using modified Taguchi approach, the optimized process parameters are laser power = 298 W, scanning speed = 900 mm/s and hatch distance = 0.075 mm, for which the results of surface roughness = 2.77 Ra, relative density = 99.24%, hardness = 334 Hv and equivalent energy density is 4.062. The estimated data for the same are surface roughness is 3.733 Ra, relative density is 99.926%, hardness is 213.64 Hv and equivalent energy density is 3.677.

Originality/value

Even though equivalent energy density represents the energy input to the process, the findings of this paper conclude that energy density should no longer be considered as a dependent process parameter, as it provides multiple results for the specified energy density. This aspect has been successfully demonstrated in this paper using test data.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 2 of 2