Search results

1 – 10 of 29
Article
Publication date: 16 June 2020

Jiawei Wang, Jinliang Liu, Guanhua Zhang and Jigang Han

Considering the “size effect” and the properties degradation of building materials on the strengthened engineering, in this paper, the technology of pasting steel plate was…

Abstract

Purpose

Considering the “size effect” and the properties degradation of building materials on the strengthened engineering, in this paper, the technology of pasting steel plate was adopted to shear strengthen a 16 m prestressed concrete hollow slab, which had serviced 20 years in cold regions. The shear properties of shear strengthen beams are analyzed.

Design/methodology/approach

Shear loading test of the shear strengthened beam and the contrast beam was conducted. Then the mechanical characteristics, failure mechanism, the mechanical response and shear capacity of shear strengthened beam and contrast beam had been discussed.

Findings

The failure mode of shear strengthened beam and contrast beam was shear compression failure, and the bond failure between concrete and prestressed reinforcement happened in both of test beams. The shear strengthening method of pasting steel plate can effectively improve the mechanical response for the shear strengthened beam. Compared with the contrast beam, the cracking load and failure shear capacity for the shear strengthened beam can be effectively increased by 12.2 and 27.6%, respectively.

Originality/value

The research results can be a reference for the detection and evaluation of shear strengthened bridges, which are strengthened by pasting steel plate. Engineers can refer to the shear strengthening method in this paper to strengthen the existing bridge, which can guarantee the safety of shear strengthened bridges.

Details

International Journal of Structural Integrity, vol. 12 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 13 August 2018

Jiawei Wang, Guanhua Zhang, Jinliang Liu and Yanmin Jia

During service period, the bridge structures will be affected by the environment and load, so the carrying capacity will decline. The purpose of this paper is to research on the…

Abstract

Purpose

During service period, the bridge structures will be affected by the environment and load, so the carrying capacity will decline. The purpose of this paper is to research on the bearing capacity of bridge structures with time.

Design/methodology/approach

Destructive test and non-linear finite element analysis are carried out by utilizing two pretensioning prestressed concrete hollow slabs in service for 20 years; using the structural test deflection value to simulate the stiffness degradation of the service bridge and the finite element calculation results verify the accuracy of the calculation.

Findings

The flexural rigidity of the main beam when the test beam is destructed is degraded to approximately 20 percent of that before the test, which agrees well with the result of finite element analysis and indicates that the method of deducing the flexural rigidity of the structure according to the measured deflection value can effectively simulate the rigidity degradation law of the bridge in service. The crack resistance property of the test beam degrades obviously and the ultimate bearing capacity of the bending resistance does not degrade obviously.

Originality/value

The research results truly reflect the destruction process, destructive form, bearing capacity and rigidity degradation law of the old beam of the concrete bridge in service for 20 years and can provide technical basis for optimization design of newly built bridges of the same type and maintenance and reinforcement design of existing old bridges.

Details

International Journal of Structural Integrity, vol. 9 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 17 July 2019

Guanhua Zhang, Jiawei Wang, Jinliang Liu, Yanmin Jia and Jigang Han

During service, cracks are caused in prestressed concrete beams owing to overload or other non-load factors. These cracks significantly affect the safety of bridge structures. The…

Abstract

Purpose

During service, cracks are caused in prestressed concrete beams owing to overload or other non-load factors. These cracks significantly affect the safety of bridge structures. The purpose of this paper is to carry out a non-linear iterative calculation for a section of a prestressed concrete beam and obtain the change in stiffness after the section cracks.

Design/methodology/approach

The existing stress of prestressed reinforcement was measured by performing a boring stress release test on two pieces of an in-service 16 m prestressed concrete hollow plate. Considering the non-linear effects of materials, the calculation model of the loss in the flexural stiffness of the prestressed concrete beam was established based on the existing prestress. The accuracy of the non-linear calculation method and the results obtained for the section were verified by conducting a bending destruction test on two pieces of the 16 m prestressed concrete hollow plate in the same batch and by utilising the measured strain and displacement data on the concrete at the top edge of the midspan section under all load levels.

Findings

The flexural stiffness of the section decreases rapidly at first and then gradually, and structural rigidity is sensitive to the initial cracking of the beam. The method for calculating the loss in the flexural stiffness of the section established with the existing stress of prestressed reinforcement as a parameter is accurate and feasible. It realizes the possibility of assessing the loss in the rigidity of a prestressed concrete structure by adopting the existing stress of prestressed reinforcement as a parameter.

Originality/value

A method for quickly determining the loss in the stiffness of structures using existing prestress is established. By employing this method, engineers can rapidly determine whether a bridge is dangerous or not without performing a loading test. Thus, this method not only ensures the safety of human life, but also reduces the cost of testing.

Details

International Journal of Structural Integrity, vol. 10 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 October 2018

Jiawei Wang, Yanmin Jia, Guanhua Zhang, Jigang Han and Jinliang Liu

Most existing studies are confined to model beam tests, which cannot reflect the actual strengthening effects provided by prestressed carbon-fiber-reinforced polymer (CFRP) plates…

Abstract

Purpose

Most existing studies are confined to model beam tests, which cannot reflect the actual strengthening effects provided by prestressed carbon-fiber-reinforced polymer (CFRP) plates to existing bridges. Hence, the actual capacity for strengthening existing bridges with prestressed CFRP plates is becoming an important concern for researchers. The paper aims to discuss these issues.

Design/methodology/approach

Static load tests of in-service prestressed concrete hollow slabs before and after strengthening are conducted. Based on the results of the tests, the failure characteristics, failure mechanism and bending performance of the slabs are compared and analyzed. Nonlinear finite element method is also used to calculate the flexural strength of the strengthened beams prestressed with CFRP plates.

Findings

Test results show that prestressed CFRP plate strengthening technology changes the failure mode of hollow slabs, delays the development of deflection and cracks, raises cracking and ultimate load-carrying capacity and remarkably improves mechanical behavior of the slab. In addition, the nonlinear finite element analyses are in good agreement with the test results.

Originality/value

Strengthening with prestressed CFRP plates has greater advantages compared to traditional CFRP plate strengthening technology and improves active material utilization. The presented finite element method can be applied in the flexural response calculations of strengthened beams prestressed with CFRP plates. The research results provide technical basis for maintenance and reinforcement design of existing bridges.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 17 June 2021

Kexin Zhang, Qi Tianyu, Li Dachao, Xue Xingwei, Fayue Wu and Xinfeng Liu

In order to understand the status of the bridge reinforcement process, the construction process monitoring of the reinforced bridge is carried out. The T-beam bridge was tested…

Abstract

Purpose

In order to understand the status of the bridge reinforcement process, the construction process monitoring of the reinforced bridge is carried out. The T-beam bridge was tested using the truck loading test. The displacements and concrete strains of the bridge at mid-span were measured during the test.

Design/methodology/approach

This paper describes an innovative technique, external prestressing, used to strengthen a 36-year-old prestressed T-beam bridge. This paper introduces the construction process of the prestressed reinforcement method, and makes a theoretical analysis of the reinforced bridge through the establishment of the reinforcement model.

Findings

This study showed that the structural capacity and performance of the bridge were enhanced with externally prestressed steel strand strengthening.

Originality/value

The innovative reinforcement method of prestressed T-shaped bridge is put forward, which has guiding significance for similar bridge reinforcement and maintenance.

Details

International Journal of Structural Integrity, vol. 12 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 1 October 2018

Jiawei Wang, Jinliang Liu, Guanhua Zhang and Yanmin Jia

The calculation of the shear capacity of inclined section for prestressed reinforced concrete beams is an important topic in the design of concrete members. The purpose of this…

Abstract

Purpose

The calculation of the shear capacity of inclined section for prestressed reinforced concrete beams is an important topic in the design of concrete members. The purpose of this paper, based on the truss-arch model, is to analyze the shear mechanism in prestressed reinforced concrete beams and establish the calculation formula for shear capacity.

Design/methodology/approach

Considering the effect of the prestressed reinforcement axial force on the angle of the diagonal struts and regression coefficient of softening cocalculation of shear capacity is established. According to the shape of the cracks of prestressed reinforced concrete beams under shear compression failure, the tie-arch model for the calculation of shear capacity is established. Shear-failure-test beam results are collected to verify the established formula for shear bearing capacity.

Findings

Through theoretical analysis and experimental beam verification, it is confirmed in this study that the truss-arch model can be used to analyze the shear mechanism of prestressed reinforced concrete members accurately. The calculation formula for the angle of the diagonal struts chosen by considering the effect of prestress is accurate. The relationship between the softening coefficient of concrete and strength of concrete that is established is correct. Considering the effect of the destruction of beam shear plasticity of the concrete on the surface crack shape, the tie-arch model, which is established where the arch axis is parabolic, is applicable.

Originality/value

The formula for shear capacity of prestressed reinforced concrete beams based on this theoretical model can guarantee the effectiveness of the calculation results when the structural properties vary significantly. Engineers can calculate the parameters of prestressed reinforced concrete beams by using the shear capacity calculation formula proposed in this paper.

Details

International Journal of Structural Integrity, vol. 9 no. 5
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 31 August 2021

Kexin Zhang, Tianyu Qi, Dachao Li, Xingwei Xue and Zhimin Zhu

The paper aims to investigate effectiveness of the strengthening method, the construction process monitoring, fielding-load tests before and after strengthening, and health…

Abstract

Purpose

The paper aims to investigate effectiveness of the strengthening method, the construction process monitoring, fielding-load tests before and after strengthening, and health monitoring after reinforcement were carried out. The results of concrete strain and deflection show that the flexural strength and stiffness of the strengthened beam are improved.

Design/methodology/approach

This paper describes prestressed steel strand as a way to strengthen a 25-year-old continuous rigid frame bridge. High strength, low relaxation steel strand with high tensile strain and good corrosion resistance were used in this reinforcement. The construction process for strengthening with prestressed steel strand and steel plate was described. Ultimate bearing capacity of the bridge after strengthening was discussed based on finite element model.

Findings

The cumulative upward deflection of the second span the third span was 39.7 mm, which is basically consistent with the theoretical value, and the measured value is smaller than the theoretical value. The deflection value of the second span during data acquisition was −20 mm–10 mm, which does not exceed the maximum deflection value of live load, and the deflection of the bridge is in a safe state during normal use. Thus, this strengthened way with prestressed steel wire rope is feasible and effective.

Originality/value

This paper describes prestressed steel strand as a way to strengthen a 25-year-old continuous rigid frame bridge. To investigate effectiveness of the strengthening method, the construction process monitoring, fielding-load tests before and after strengthening and health monitoring after reinforcement were carried out.

Details

International Journal of Structural Integrity, vol. 12 no. 6
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 3 August 2021

Long Liu, Lifeng Wang and Ziwang Xiao

The flexural reinforcement of bridges in-service has been an important research field for a long time. Anchoring steel plate at the bottom of beam is a simple and effective method…

Abstract

Purpose

The flexural reinforcement of bridges in-service has been an important research field for a long time. Anchoring steel plate at the bottom of beam is a simple and effective method to improve its bearing capacity. The purpose of this paper is to explore the influence of anchoring steel plates of different thicknesses on the bearing capacity of hollow slab beam and to judge its working status.

Design/methodology/approach

First, static load experiments are carried out on two in-service RC hollow slab beams; meanwhile, nonlinear finite element models are built to study the bearing capacity of them. The nonlinear material and shear slip effect of studs are considered in the models. Second, the finite element models are verified, and the numerical simulation results are in good agreement with the experimental results. Finally, the finite element models are adopted to carry out the research on the influence of different steel plate thicknesses on the flexural bearing capacity and ductility.

Findings

When steel plates of different thicknesses are adopted to reinforce RC hollow slab beams, the bearing capacity increases with the increase of the steel plate thickness in a certain range. But when the steel plate thickness reaches a certain level, bearing capacity is no longer influenced. The displacement ductility coefficient decreases with the increase of steel plate thickness.

Originality/value

Based on experimental study, this paper makes an extrapolation analysis of the bearing capacity of hollow slab beams reinforced with steel plates of different thicknesses through finite element simulation and discusses the influence on ductility. This method not only ensures the accuracy of bearing capacity evaluation but also does not need many samples, which is economical to a certain extent. The research results provide a basis for the reinforcement design of similar bridges.

Details

International Journal of Structural Integrity, vol. 12 no. 4
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 25 October 2021

Chunwei Li, Quansheng Sun and Yancheng Liu

As the service time of bridges increases, the degradation of bending capacity, the lack of safety reserves and the decrease in bridge reliability are common in early built…

Abstract

Purpose

As the service time of bridges increases, the degradation of bending capacity, the lack of safety reserves and the decrease in bridge reliability are common in early built bridges. Due to the defective lateral hinge joints, hollow slab bridges are prone to cracking of hinge joint between plates, transverse connection failure and stress of single plates under the action of long-term overload and repeated load. These phenomena seriously affect the bending capacity of the hollow slab bridge. This paper aims to describe a new method of simply supported hollow slab bridge reinforcement called polyurethane–cement (PUC) composite flexural reinforcement.

Design/methodology/approach

This paper first studies the preparation and tensile and compressive properties of PUC composite materials. Then, relying on the actual bridge strengthening project, the 5 × 20 m prestressed concrete simply supported hollow slab was reinforced with PUC composites with a thickness of 3 cm within 18 m of the beam bottom. Finally, the load test was used to compare the performance of the bridge before and after the strengthening.

Findings

Results showed that PUC has high compressive and tensile strengths of 72 and 46 MPa. The static test revealed that the measured values and verification coefficients of the measured points were reduced compared with those before strengthening, the deflection and strain were reduced by more than 15%, the measured section stiffness was improved by approximately 20%. After the strengthening, the lateral connection of the bridge, the strength and rigidity of the structure and the structural integrity and safety reserves were all significantly improved. The application of PUC to the flexural strengthening of the bridge structure has a significant effect.

Originality/value

As a new type of material, PUC composite is light, remarkable and has good performance. When used in the bending strengthening of bridge structures, this material can improve the strength, rigidity, safety reserve and bending capacity of bridges, thus demonstrating its good engineering application prospect.

Details

International Journal of Structural Integrity, vol. 13 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 13 March 2020

Hongshuai Gao and Quansheng Sun

With the rapid development of transportation and the continuous increase of traffic volume and load level, some bridges cannot meet the use requirements, and the demand for bridge…

Abstract

Purpose

With the rapid development of transportation and the continuous increase of traffic volume and load level, some bridges cannot meet the use requirements, and the demand for bridge strengthening is growing. Furthermore, bridges are affected by factors such as structure and external environment. With the increase of service time, the deterioration of bridges is also increasing. In order to avoid the waste caused by demolition and reconstruction, it is necessary to strengthen the bridge accurately and effectively to improve the bearing capacity and durability, eliminate the hidden dangers, and ensure the normal operation of the bridge. It is of great significance to study the strengthening methods. Compared with traditional strengthening methods, the advantages of using new materials and new technology to strengthen bridges are more obvious. This paper introduces a new method for bridge active strengthening, called modified polyurethane cement with prestressed steel wire rope (MPC-PSWR).

Design/methodology/approach

Relying on the actual bridge strengthening project, five T-beams of the superstructure of the bridge are taken as the research object, and the T-beams before and after strengthening are evaluated, calculated, and analyzed by finite element simulation and field load test. By comparing the numerical simulation and load test data, the strengthening effect of modified polyurethane cement with prestressed steel wire rope on stiffness, strength, and bearing capacity is verified, which proves that the strengthening effect of MPC-PSWR is effective for strengthening.

Findings

MPC-PSWR can effectively reduce deflection, cracks, and strain, thereby significantly improving the flexural capacity of existing bridges. Under the design load, the deflection, crack width, and stress of the strengthened beams decrease in varying degrees. The overall performance of the beams strengthened by MPC-PSWR has been improved, and the flexural performance meets the requirements of the code.

Originality/value

MPC-PSWR is an innovative bridge-strengthening method. Through the analysis of its MPC-PSWR effect, the MPC-PSWR method with reference to significance for the design and construction of similar bridges is put forward.

Details

International Journal of Structural Integrity, vol. 11 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 10 of 29