Search results

1 – 10 of 302
Open Access
Article
Publication date: 17 August 2021

Emanuele Quaranta, Toni Pujol and Maria Carmela Grano

The paper presents a techno-economic analysis of the electromechanical equipment of traditional vertical axis water mills (VAWMs) to help investors, mill owners and engineers to…

1870

Abstract

Purpose

The paper presents a techno-economic analysis of the electromechanical equipment of traditional vertical axis water mills (VAWMs) to help investors, mill owners and engineers to preliminary estimate related benefits and costs of a VAWM repowering.

Design/methodology/approach

Two sustainable repowering solutions were examined with the additional aim to preserve the original status and aesthetics of a VAWM: the use of a vertical axis water wheel (VAWW) and a vertical axis impulse turbine. The analysis was applied to a database of 714 VAWMs in Basilicata (Italy), with known head and flow.

Findings

Expeditious equations were proposed for both solutions to determine: (1) a suitable diameter as a function of the flow rate; (2) the costs of the electromechanical equipment; (3) achievable power. The common operating hydraulic range of a VAWM (head and flow) was also identified. Reality checks on the obtained results are shown, in particular by examining two Spanish case studies and the available literature. The power generated by the impulse turbine (Turgo type) is twice that of a VAWW, but it is one order of magnitude more expensive. Therefore, the impulse turbine should be used for higher power requirements (>3 kW), or when the electricity is delivered to the grid, maximizing the long-term profit.

Originality/value

Since there is not enough evidence about the achievable performance and cost of a VAWM repowering, this work provides expeditious tools for their evaluation.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. 13 no. 2
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 1 May 2020

Reza Aghaei Togh and Mohammad Mahdi Karimi

This paper aims to present the designing and investigating various types of impulse blade profiles to find the optimal profile that has better performance than the first or…

Abstract

Purpose

This paper aims to present the designing and investigating various types of impulse blade profiles to find the optimal profile that has better performance than the first or original blade. The studied model is a turbine with an output power below 1 MW and a large pressure ratio up to 20, which is used to gain relatively high specific work output. As a result of its low mass flow rate, the turbine is used under partial-admission conditions. The turbine’s stator is a group of convergence–divergence nozzles that provide supersonic flow.

Design/methodology/approach

More than 10 types of two-dimensional blade profiles were designed using the developed preliminary design calculations and numerical analysis. The numerical results are validated using the existing experimental results. Finally, the case with improved performance is introduced as the final optimum case.

Findings

It was found that the performance parameters such as efficiency, power and torque are increased by more than 8% in the selected best model, in comparison with the original model. Moreover, the total pressure loss is 12% decreased for the selected model. Finally, the selected profile with superior performance is proposed.

Originality/value

Simultaneous numerical tests are conducted to examine the interaction of different supersonic blade profiles with the partially injected flow to the rotor.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 November 1953

WITH record attendances during the first days of the Motor Show this year, Exhibitors are asking if it would not be possible to have certain times, or days, reserved for trade…

Abstract

WITH record attendances during the first days of the Motor Show this year, Exhibitors are asking if it would not be possible to have certain times, or days, reserved for trade buyers. The promoters are obviously concerned with any possible loss of gate money, but it is very true that at times, when stands are crowded with mere sight‐seers it is very difficult for genuine potential buyers and trade personnel to see what they want in the short time that may be at their disposal. These record attendances may not be repeated always; this year is the first time for a long time that anyone can order any car with a reasonable delivery date, and most cars with only a few weeks wait.

Details

Industrial Lubrication and Tribology, vol. 5 no. 11
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 25 February 2014

Reza Aghaei tog and Abolghasem Mesgarpoor Tousi

This paper is concerned with improving the flow pattern in the nozzle-rotor axial gap in impulse turbines using a genetic algorithm (GA) and 3D numerical analysis. The paper aims…

Abstract

Purpose

This paper is concerned with improving the flow pattern in the nozzle-rotor axial gap in impulse turbines using a genetic algorithm (GA) and 3D numerical analysis. The paper aims to discuss these issues.

Design/methodology/approach

The appropriate model was used to estimate the turbine performance introduced in the beginning of the work. Then, the nozzle design parameters that are effective in the axial gap flow pattern are optimized using a non-linear optimization code. This code works based on the GA theory. Since the GA results are not conclusive, the selected cases were evaluated using 3D numerical analysis. For a detailed comparison of the flow pattern in initial and improved cases, a transient analysis was done. Experimental tests were performed in order to validate the work. For this purpose, the characteristic curves of the turbines were studied and compared with each other.

Findings

Improving the nozzle-rotor axial gap flow pattern leading to increase in the total-to-total efficiency of the turbine by more than two points.

Research limitations/implications

Partially injected flow forced to use the full model computational analysis.

Practical implications

Weight reduction in a feeding system.

Originality/value

New loss modeling method presented for partial admission condition.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 August 1947

A.D. Baxter

THE rocket motor is a form of jet propulsion which is characterized by independence of the external atmosphere for combustion, relative independence of altitude and flight…

Abstract

THE rocket motor is a form of jet propulsion which is characterized by independence of the external atmosphere for combustion, relative independence of altitude and flight velocity upon thrust, small frontal area for high thrusts, simple construction and low weight, and high rate of fuel consumption. Its use was greatly developed during the war years and many applications are now familiar to all. Most of the work on rocket missiles, such as the anti‐aircraft barrages, fighter armament, etc., was performed with solid fuel rockets, but liquid fuels were developed by the Germans for the well‐known V.2, for the Me. 163 aircraft, the Henschel glide bomb and various other applications. They concentrated a great deal of effort on this work and considerable technical progress had been made with different systems. Three main systems emerged and these were distinguished by the oxygen bearing fluids they used. The fluids were:

Details

Aircraft Engineering and Aerospace Technology, vol. 19 no. 8
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 5 May 2015

Reza Aghaei tog and Abolghasem Mesgarpoor Tousi

This study aims to presenting an empirical model for partially admitted turbine efficiency. When the design mass-flow rate is too small that a normal full-admission design would…

Abstract

Purpose

This study aims to presenting an empirical model for partially admitted turbine efficiency. When the design mass-flow rate is too small that a normal full-admission design would give very-small blade height, it may be advantageous to use partial admission. The losses due to partial admission with long blades may be less than the losses due to leakage and low Reynolds-number of the full-admission turbines with short blades. The turbine efficiency is highly dependent on the degree of partial admission. The empirical model of turbine efficiency is necessary for simulation and analysis of dynamic performances of the turbine system. In this work, appropriate empirical loss correlations are introduced and a proper model is proposed for turbine efficiency.

Design/methodology/approach

Experimental and numerical tests are conducted to evaluate the proposed model and the results are compared with the results of existing models. In this work, the effect of nozzles overlapping on the flow pattern is emphasized. Therefore, various models with different degrees of overlapping are simulated and their effects on the turbine efficiency are subsequently evaluated.

Findings

A suitable cubic polynomial expression for small axial supersonic turbine efficiency in experiments is suggested. The overlapping nozzles cause change in the flow pattern and the entropy distribution. Therefore, any change in the degree of overlapping of nozzles changes the efficiency of the turbine.

Research limitations/implications

In this work, time-consuming numerous experimental and numerical tests of the turbine are required.

Practical implications

Implication of a proper formula for a partially admitted turbine may result in enhanced prediction and dynamic performance evaluation of the test turbine.

Originality/value

A proper empirical model for a partially admitted supersonic turbine is introduced. This model is suitable for one blocked partially admitted turbine with Mach number between 1.2 and 1.8.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 3 May 2013

Guillermo Paniagua, Sergio Lavagnoli, Tom Verstraete, Wassim Mahmoudi and Tariq Benamara

Contra‐rotating turbines offer reduced size, weight, and cooling requirements, compared to conventional co‐rotating machinery. In spite of the associated mechanical complexity…

Abstract

Purpose

Contra‐rotating turbines offer reduced size, weight, and cooling requirements, compared to conventional co‐rotating machinery. In spite of the associated mechanical complexity, their aero‐thermal performance is superior to conventional turbines, not only due to the elimination of stator blade rows, but also because lower turning airfoils can be implemented as a result. The purpose of this paper is to present a methodology to determine the optimum velocity triangles of the turbine, together with a two‐dimensional design and optimization tool to minimize the blade unsteady force using radial basis function network, coupled to a genetic algorithm. The proposed design methodology is illustrated with the aerodynamic design of a contra‐rotating two‐axis turbine, which is able to deliver the power necessary to drive the LOX and LH2 pumps of an improved expander rocket engine.

Design/methodology/approach

This paper presents a methodology to determine the optimum velocity triangles of the turbine, together with a two dimensional design and optimization tool to minimize the blade unsteady force using radial basis function network, coupled to a genetic algorithm. The proposed design methodology is illustrated with the aerodynamic design of a contra‐rotating two‐axis turbine, which is able to deliver the power necessary to drive the LOX and LH2 pumps of an expander rocket engine, namely the Japanese LE‐5B.

Findings

The airfoil optimizer allows reductions in the downstream pressure distortion of 40 per cent. Consequently, the unsteady forces in the downstream blade row are minimized.

Originality/value

This paper presents to turbomachinery designers in liquid propulsion a novel tool to enhance the aerodynamic performance while reducing the unsteady forces on the blades.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 23 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 July 2023

Jie Sun, X.F. Ge and Yuan Zheng

The research in this paper helps to understand the difference between the Eulerian method and the Lagrangian method in describing the performance of Pelton turbine buckets, so as…

Abstract

Purpose

The research in this paper helps to understand the difference between the Eulerian method and the Lagrangian method in describing the performance of Pelton turbine buckets, so as to improve the design level and design efficiency of the runner.

Design/methodology/approach

This paper used DualSPHysics to calculate the unsteady flow of the Pelton turbine runner bucket and compared it with the mesh-based method to explore the difference between mesh-based and particle-based methods in torque curves, jet flow patterns and pressure characteristics.

Findings

It is noted that the particle-based method is challenging to compare with the mesh-based method concerning accuracy. In addition to better describing the free water film, the particle method also captures many droplets near the water film, but it cannot well describe the negative pressure region on the bucket back and the resulting jet interference after cutting off the jet. Compared with the mesh-based method, the pressure measurement points obtained by the particle-based method generally have shorter periods and violent fluctuations, and the pressure value of some points is underestimated.

Originality/value

This paper helped to calculate the unsteady characteristics of the Pelton turbine by Fluent, CFX and DualSPHysics; exploration jet flow pattern differences between the mesh and meshfree methods; prediction of the flow interference between the bucket back and the jet and the pressure curve of SPH usually has a shorter period and violent fluctuations.

Details

Engineering Computations, vol. 40 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 1997

Jon Huete and Riti Singh

Suggests that the next civil supersonic passenger aircraft project will pose a number of challenges. The propulsion system for this aircraft will have to achieve economic…

1253

Abstract

Suggests that the next civil supersonic passenger aircraft project will pose a number of challenges. The propulsion system for this aircraft will have to achieve economic operation for both supersonic and subsonic cruise modes. In addition, the current and intended noise and pollutant emissions legislation will have to be met. Suggests that, while there are a number of proposed engines for the next generation civil supersonic aircraft, they all exhibit difficulties in meeting the compromises inherent in the engine duty. Offers a novel solution based on a unique design. Discusses the underlying issues and presents the design based on retractable fans driven by a single stage double pass tip turbine.

Details

Aircraft Engineering and Aerospace Technology, vol. 69 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 26 August 2014

J. Kelly, D. O’Sullivan, W.M.D. Wright, R. Alcorn and A.W. Lewis

The purpose of this paper is to disseminate the lessons learned from the successful deployment of a wave energy converter (WEC) and accelerate growth in the field of ocean energy…

Abstract

Purpose

The purpose of this paper is to disseminate the lessons learned from the successful deployment of a wave energy converter (WEC) and accelerate growth in the field of ocean energy.

Design/methodology/approach

A thorough, well structured, documented, industrial approach was taken to the deployment because of the depth and scale of the task required. This approach is shown throughout the paper, which reflects the importance of a comprehensive project plan in success as well as failure.

Findings

The findings demonstrate the viability of the use of off shore WEC to generate electricity and that such a project can be completed on time and on budget.

Research limitations/implications

The research implications of the paper include the importance of an enhanced, integrated supervisory system control in terms of efficiency, operation and maintenance, and long-term viability of WECs. This paper can be used to help guide the direction of further research in similar areas.

Practical implications

The practical implications include proof that WEC deployments can be carried out both on time and under budget. It highlights much of the practical data collected throughout the course of the project and presents it so that it might be used as a guide for future projects.

Originality/value

At the time of this paper, successful deployment of off shore WECs has been a rare accomplishment. Because the project was publicly funded, the data collected during this project, both technical and practical, is freely available.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 302