Search results

1 – 10 of 907
Article
Publication date: 4 December 2017

Wu Deng, Meng Sun, Huimin Zhao, Bo Li and Chunxiao Wang

This study aims to propose a new airport gate assignment method to effectively improve the comprehensive operation capacity and efficiency of hub airport. Gate assignment is one…

Abstract

Purpose

This study aims to propose a new airport gate assignment method to effectively improve the comprehensive operation capacity and efficiency of hub airport. Gate assignment is one of the most important tasks for airport ground operations, which assigns appropriate airport gates with high efficiency reasonable arrangement.

Design/methodology/approach

In this paper, on the basis of analyzing the characteristics of airport gates and flights, an efficient multi-objective optimization model of airport gate assignment based on the objectives of the most balanced idle time, the shortest walking distances of passengers and the least number of flights at apron is constructed. Then an improved ant colony optimization (ICQACO) algorithm based on the ant colony collaborative strategy and pheromone update strategy is designed to solve the constructed model to fast realize the gate assignment and obtain a rational and effective gate assignment result for all flights in the different period.

Findings

In the designed ICQACO algorithm, the ant colony collaborative strategy is used to avoid the rapid convergence to the local optimal solution, and the pheromone update strategy is used to quickly increase the pheromone amount, eliminate the interference of the poor path and greatly accelerate the convergence speed.

Practical implications

The actual flight data from Guangzhou Baiyun airport of China is selected to verify the feasibility and effectiveness of the constructed multi-objective optimization model and the designed ICQACO algorithm. The experimental results show that the designed ICQACO algorithm can increase the pheromone amount, accelerate the convergence speed and avoid to fall into the local optimal solution. The constructed multi-objective optimization model can effectively improve the comprehensive operation capacity and efficiency. This study is a very meaningful work for airport gate assignment.

Originality/value

An efficient multi-objective optimization model for hub airport gate assignment problem is proposed in this paper. An improved ant colony optimization algorithm based on ant colony collaborative strategy and the pheromone update strategy is deeply studied to speed up the convergence and avoid to fall into the local optimal solution.

Article
Publication date: 26 June 2023

Somia Boubedra, Cherif Tolba, Pietro Manzoni, Djamila Beddiar and Youcef Zennir

With the demographic increase, especially in big cities, heavy traffic, traffic congestion, road accidents and augmented pollution levels hamper transportation networks. Finding…

Abstract

Purpose

With the demographic increase, especially in big cities, heavy traffic, traffic congestion, road accidents and augmented pollution levels hamper transportation networks. Finding the optimal routes in urban scenarios is very challenging since it should consider reducing traffic jams, optimizing travel time, decreasing fuel consumption and reducing pollution levels accordingly. In this regard, the authors propose an enhanced approach based on the Ant Colony algorithm that allows vehicle drivers to search for optimal routes in urban areas from different perspectives, such as shortness and rapidness.

Design/methodology/approach

An improved ant colony algorithm (ACO) is used to calculate the optimal routes in an urban road network by adopting an elitism strategy, a random search approach and a flexible pheromone deposit-evaporate mechanism. In addition, the authors make a trade-off between route length, travel time and congestion level.

Findings

Experimental tests show that the routes found using the proposed algorithm improved the quality of the results by 30% in comparison with the ACO algorithm. In addition, the authors maintain a level of accuracy between 0.9 and 0.95. Therefore, the overall cost of the found solutions decreased from 67 to 40. In addition, the experimental results demonstrate that the authors’ improved algorithm outperforms not only the original ACO algorithm but also popular meta-heuristic algorithms such as the genetic algorithm (GA) and particle swarm optimization (PSO) in terms of reducing travel costs and improving overall fitness value.

Originality/value

The proposed improvements to the ACO to search for optimal paths for urban roads include incorporating multiple factors, such as travel length, time and congestion level, into the route selection process. Furthermore, random search, elitism strategy and flexible pheromone updating rules are proposed to consider the dynamic changes in road network conditions and make the proposed approach more relevant and effective. These enhancements contribute to the originality of the authors’ work, and they have the potential to advance the field of traffic routing.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 16 no. 4
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 1 September 2019

Yu Zhou

To plan the urban traffic path using the ant colony algorithm, the composition and functional division of the mobile robot are analyzed. The TSP (Traveling Salesman Problem) is…

Abstract

To plan the urban traffic path using the ant colony algorithm, the composition and functional division of the mobile robot are analyzed. The TSP (Traveling Salesman Problem) is used to deeply understand the traditional ant colony algorithm. Then, based on this, the improvement scheme of the traditional ant colony algorithm is analyzed. The results showed that the artificial potential field method and the A* algorithm improved the performance of the ant colony algorithm. At the initial stage of the search path, the blindness and randomness of the ant colony algorithm due to insufficient pheromone concentration in each path were solved. The local optimal path is avoided with the development of algorithm iteration. Therefore, the improved ant colony algorithm is superior to the traditional ant colony algorithm.

Details

Open House International, vol. 44 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

Article
Publication date: 5 January 2010

A. Kaveh and S. Talatahari

The computational drawbacks of existing numerical methods have forced researchers to rely on heuristic algorithms. Heuristic methods are powerful in obtaining the solution of…

1596

Abstract

Purpose

The computational drawbacks of existing numerical methods have forced researchers to rely on heuristic algorithms. Heuristic methods are powerful in obtaining the solution of optimization problems. Although they are approximate methods (i.e. their solution are good, but not provably optimal), they do not require the derivatives of the objective function and constraints. Also, they use probabilistic transition rules instead of deterministic rules. The purpose of this paper is to present an improved ant colony optimization (IACO) for constrained engineering design problems.

Design/methodology/approach

IACO has the capacity to handle continuous and discrete problems by using sub‐optimization mechanism (SOM). SOM is based on the principles of finite element method working as a search‐space updating technique. Also, SOM can reduce the size of pheromone matrices, decision vectors and the number of evaluations. Though IACO decreases pheromone updating operations as well as optimization time, the probability of finding an optimum solution is not reduced.

Findings

Utilizing SOM in the ACO algorithm causes a decrease in the size of the pheromone vectors, size of the decision vector, size of the search space, the number of function evaluations, and finally the required optimization time. SOM performs as a search‐space‐updating rule, and it can exchange discrete‐continuous search domain to each other.

Originality/value

The suitability of using ACO for constrained engineering design problems is presented, and applied to optimal design of different engineering problems.

Details

Engineering Computations, vol. 27 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 13 April 2022

Xiaofan Liu, Yupeng Zhou, Minghao Yin and Shuai Lv

The paper aims to provide an efficient meta-heuristic algorithm to solve the partial set covering problem (PSCP). With rich application scenarios, the PSCP is a fascinating and…

Abstract

Purpose

The paper aims to provide an efficient meta-heuristic algorithm to solve the partial set covering problem (PSCP). With rich application scenarios, the PSCP is a fascinating and well-known non-deterministic polynomial (NP)-hard problem whose goal is to cover at least k elements with as few subsets as possible.

Design/methodology/approach

In this work, the authors present a novel variant of the ant colony optimization (ACO) algorithm, called Argentine ant system (AAS), to deal with the PSCP. The developed AAS is an integrated system of different populations that use the same pheromone to communicate. Moreover, an effective local search framework with the relaxed configuration checking (RCC) and the volatilization-fixed weight mechanism is proposed to improve the exploitation of the algorithm.

Findings

A detailed experimental evaluation of 75 instances reveals that the proposed algorithm outperforms the competitors in terms of the quality of the optimal solutions. Also, the performance of AAS gradually improves with the growing instance size, which shows the potential in handling complex practical scenarios. Finally, the designed components of AAS are experimentally proved to be beneficial to the whole framework. Finally, the key components in AAS have been demonstrated.

Originality/value

At present, there is no heuristic method to solve this problem. The authors present the first implementation of heuristic algorithm for solving PSCP and provide competitive solutions.

Details

Data Technologies and Applications, vol. 56 no. 5
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 12 December 2023

Jian Zhou, Shuyu Liu, Jian Lu and Xinyu Liu

The purpose of this paper is to introduce an improved system identification method for small unmanned helicopters combining adaptive ant colony optimization algorithm and Levy’s…

Abstract

Purpose

The purpose of this paper is to introduce an improved system identification method for small unmanned helicopters combining adaptive ant colony optimization algorithm and Levy’s method and to solve the problem of low model prediction accuracy caused by low-frequency domain curve fitting in the small unmanned helicopter frequency domain parameter identification method.

Design/methodology/approach

This method uses the Levy method to obtain the initial parameters of the fitting model, uses the global optimization characteristics of the adaptive ant colony algorithm and the advantages of avoiding the “premature” phenomenon to optimize the initial parameters and finally obtains a small unmanned helicopter through computational optimization Kinetic models under lateral channel and longitudinal channel.

Findings

The algorithm is verified by flight test data. The verification results show that the established dynamic model has high identification accuracy and can accurately reflect the dynamic characteristics of small unmanned helicopter flight.

Originality/value

This paper presents a novel and improved frequency domain identification method for small unmanned helicopters. Compared with the conventional method, this method improves the identification accuracy and reduces the identification error.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 January 2010

Kuan Yew Wong and Phen Chiak See

This paper aims to describe a new hybrid ant colony optimization (ACO) algorithm developed to solve facility layout problems (FLPs) formulated as quadratic assignment problems…

Abstract

Purpose

This paper aims to describe a new hybrid ant colony optimization (ACO) algorithm developed to solve facility layout problems (FLPs) formulated as quadratic assignment problems (QAPs).

Design/methodology/approach

A hybrid ACO algorithm which combines max‐min ant system (MMAS) (i.e. a variant of ACO) with genetic algorithm (GA) has been developed. The hybrid algorithm is further improved with the use of a novel minimum pheromone threshold strategy (MPTS).

Findings

The hybrid algorithm shows satisfactory results in the experimental evaluation due to the synergy and collaboration between MMAS and GA. The results also show that the use of MPTS helps them to achieve such performance, by promoting search diversification.

Research limitations/implications

The experimental evaluation presented emphasizes more on the search performance or pattern of the hybrid algorithm. Detailed computational work could reveal other strengths of the algorithm.

Practical implications

The developmental work presented in this paper could be used by researchers and practitioners to solve QAPs. Its use may also be expanded to solve other combinatorial optimization and engineering problems.

Originality/value

This paper provides useful insights into the development of a hybrid ACO algorithm that combines MMAS with GA for solving QAPs.

Details

Engineering Computations, vol. 27 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 April 2019

Lei Wu, Xue Tian, Hongyan Wang, Qi Liu and Wensheng Xiao

As a kind of NP-hard combinatorial optimization problem, pipe routing design (PRD) is applied widely in modern industries. In the offshore oil and gas industry, a semi-submersible…

Abstract

Purpose

As a kind of NP-hard combinatorial optimization problem, pipe routing design (PRD) is applied widely in modern industries. In the offshore oil and gas industry, a semi-submersible production platform is an important equipment for oil exploitation and production. PRD is one of the most key parts of the design of semi-submersible platform. This study aims to present an improved ant colony algorithm (IACO) to address PRD for the oil and gas treatment system when designing a semi-submersible production platform.

Design/methodology/approach

First, to simplify PRD problem, a novel mathematical model is built according to real constraints and rules. Then, IACO, which combines modified heuristic function, mutation mechanism and dynamical parameter mechanism, is introduced.

Findings

Based on a set of specific instances, experiments are carried out, and the experimental results show that the performance of IACO is better than that of two variants of ACO, especially in terms of the convergence speed and swarm diversity. Finally, IACO is used to solve PRD for the oil and gas treatment system of semi-submersible production platform. The simulation results, which include nine pipe paths, demonstrate the practicality and high-efficiency of IACO.

Originality/value

The main contribution of this study is the development of method for solving PRD of a semi-submersible production platform based on the novel mathematical model and the proposed IACO.

Details

Assembly Automation, vol. 39 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Book part
Publication date: 18 January 2024

Ackmez Mudhoo, Gaurav Sharma, Khim Hoong Chu and Mika Sillanpää

Adsorption parameters (e.g. Langmuir constant, mass transfer coefficient and Thomas rate constant) are involved in the design of aqueous-media adsorption treatment units. However…

Abstract

Adsorption parameters (e.g. Langmuir constant, mass transfer coefficient and Thomas rate constant) are involved in the design of aqueous-media adsorption treatment units. However, the classic approach to estimating such parameters is perceived to be imprecise. Herein, the essential features and performances of the ant colony, bee colony and elephant herd optimisation approaches are introduced to the experimental chemist and chemical engineer engaged in adsorption research for aqueous systems. Key research and development directions, believed to harness these algorithms for real-scale water treatment (which falls within the wide-ranging coverage of the Sustainable Development Goal 6 (SDG 6) ‘Clean Water and Sanitation for All’), are also proposed. The ant colony, bee colony and elephant herd optimisations have higher precision and accuracy, and are particularly efficient in finding the global optimum solution. It is hoped that the discussions can stimulate both the experimental chemist and chemical engineer to delineate the progress achieved so far and collaborate further to devise strategies for integrating these intelligent optimisations in the design and operation of real multicomponent multi-complexity adsorption systems for water purification.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 15 June 2015

Bundit Manaskasemsak and Arnon Rungsawang

This paper aims to present a machine learning approach for solving the problem of Web spam detection. Based on an adoption of the ant colony optimization (ACO), three algorithms

Abstract

Purpose

This paper aims to present a machine learning approach for solving the problem of Web spam detection. Based on an adoption of the ant colony optimization (ACO), three algorithms are proposed to construct rule-based classifiers to distinguish between non-spam and spam hosts. Moreover, the paper also proposes an adaptive learning technique to enhance the spam detection performance.

Design/methodology/approach

The Trust-ACO algorithm is designed to let an ant start from a non-spam seed, and afterwards, decide to walk through paths in the host graph. Trails (i.e. trust paths) discovered by ants are then interpreted and compiled to non-spam classification rules. Similarly, the Distrust-ACO algorithm is designed to generate spam classification ones. The last Combine-ACO algorithm aims to accumulate rules given from the former algorithms. Moreover, an adaptive learning technique is introduced to let ants walk with longer (or shorter) steps by rewarding them when they find desirable paths or penalizing them otherwise.

Findings

Experiments are conducted on two publicly available WEBSPAM-UK2006 and WEBSPAM-UK2007 datasets. The results show that the proposed algorithms outperform well-known rule-based classification baselines. Especially, the proposed adaptive learning technique helps improving the AUC scores up to 0.899 and 0.784 on the former and the latter datasets, respectively.

Originality/value

To the best of our knowledge, this is the first comprehensive study that adopts the ACO learning approach to solve the problem of Web spam detection. In addition, we have improved the traditional ACO by using the adaptive learning technique.

Details

International Journal of Web Information Systems, vol. 11 no. 2
Type: Research Article
ISSN: 1744-0084

Keywords

1 – 10 of 907